CAREER: Mechanistic studies of cilium proteins in cell signaling

职业:纤毛蛋白在细胞信号传导中的机制研究

基本信息

  • 批准号:
    2143711
  • 负责人:
  • 金额:
    $ 137.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-15 至 2026-12-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Most cells in our body have a primary cilium (a single hair-like projection on their cell surface) that allows them to interact with each other via chemical signals. This ancient and mysterious organelle acts like a radio antenna, allowing cells to receive different information, depending on which kinds of receptors their antenna contains. Gene mutations affecting ciliary signaling have been implicated in a host of diseases that result in the malformation and dysfunction of multiple organs. This project focuses on primary cilia in the developing brain. During brain formation, the progenitor cells that give rise to nerve cells (neurons) coordinate with each other to make sure that specific type of neurons are produced in the correct location at the right time. Surprisingly little is known about which receptors in their primary cilia allow effective communication. This project will document the full catalog of receptors situated in the primary cilia of neural progenitor cells using novel techniques that selectively label cilium proteins with a special tag named biotin, and then identify these marked proteins using mass spectrometry. It will also decipher the mechanisms by which some of these proteins influence developmental decisions. Pilot studies have already identified proteins previously shown to control brain development that are unexpectedly operating in the cilium. Overall, the results of this project will provide novel insights into how neural cell progenitors coordinate to build the brain. They advance our understanding of how brain development works and will also help us to better understand brain developmental disorders. In addition, this project will engage local K-12 students and high school teachers in laboratory research, aiming to inspire a sustained interest in the biological sciences among local youth, as well as implementing an integrated educational program to promote participation and retention of students from underrepresented minorities in biological research. These activities will substantially improve education in life science in the socioeconomically disadvantaged California Central Valley.Neural progenitors in the developing brain (also known as Radial Glia, RG) produce all of the brain’s neurons in a time- and space-specific manner. Different neuronal types are generated at distinct developmental stages and in discrete brain regions. This process is highly coordinated via cell signaling sensed by the RG primary cilia. Defects in cilium function lead to ciliopathies, a wide-ranging spectrum of disorders that usually involve brain structural defects. Yet a systematic understanding of RG cilium signaling pathways is lacking. This project will identify new signaling proteins in RG cilia by leveraging a new proximity labeling tool (TurboID) and a novel transgenic mouse model in which TurboID is selectively expressed in the cilium of RG cells. Quantitative proteomic studies with rigorous controls will reveal bona fide cilium proteins operating in discrete brain regions and across different developmental stages. Pilot studies with cilium-targeted TurboID have surprisingly revealed cilium localization of a protein previously reported to regulate neurogenesis through undetermined mechanisms. Preliminary data show that this protein operates in the cilium to regulate Hedgehog signaling, the best-described pathway in the cilium. Investigating the interaction between this new cilium protein and Hedgehog signaling will reveal new regulatory mechanisms in embryonic neurogenesis, and demonstrate how cilium proteomics can help solve standing long-questions in brain development. By systemically unveiling the signaling pathways used by RG cilia with spatiotemporal resolution, this project will also chart new directions for future neurodevelopmental studies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。我们体内的大多数细胞都有初级纤毛(细胞表面上的单个毛发状突起),使它们能够通过化学信号相互作用。这个古老而神秘的细胞器就像一个无线电天线,允许细胞接收不同的信息,这取决于它们的天线包含哪种受体。影响纤毛信号传导的基因突变与导致多器官畸形和功能障碍的许多疾病有关。这个项目的重点是初级纤毛在发育中的大脑。在大脑形成过程中,产生神经细胞(神经元)的祖细胞相互协调,以确保特定类型的神经元在正确的时间在正确的位置产生。令人惊讶的是,人们对它们初级纤毛中的哪些受体允许有效的交流知之甚少。该项目将使用新技术记录位于神经祖细胞初级纤毛中的受体的完整目录,该技术使用名为生物素的特殊标签选择性地标记纤毛蛋白,然后使用质谱法鉴定这些标记的蛋白。它还将破译其中一些蛋白质影响发育决策的机制。初步研究已经确定了先前显示控制大脑发育的蛋白质,这些蛋白质在纤毛中意外地起作用。总的来说,该项目的结果将为神经祖细胞如何协调构建大脑提供新的见解。它们促进了我们对大脑发育如何工作的理解,也将帮助我们更好地了解大脑发育障碍。此外,该项目将吸引当地K-12学生和高中教师参与实验室研究,旨在激发当地青年对生物科学的持续兴趣,并实施综合教育计划,以促进代表性不足的少数民族学生参与和保留生物研究。这些活动将极大地改善社会经济条件不利的加州中央谷的生命科学教育。发育中的大脑中的神经祖细胞(也称为放射状胶质细胞,RG)以特定于时间和空间的方式产生大脑的所有神经元。不同的神经元类型在不同的发育阶段和离散的大脑区域中产生。这一过程是高度协调通过RG初级纤毛感受到的细胞信号。纤毛功能缺陷导致纤毛病,这是一种广泛的疾病,通常涉及大脑结构缺陷。然而,RG纤毛信号通路缺乏系统的了解。该项目将利用一种新的邻近标记工具(TurboID)和一种新的转基因小鼠模型(其中TurboID在RG细胞的纤毛中选择性表达)来识别RG纤毛中的新信号蛋白。严格控制的定量蛋白质组学研究将揭示真正的纤毛蛋白在不同的大脑区域和不同的发育阶段。以纤毛为靶点的TurboID的初步研究令人惊讶地揭示了一种蛋白质的纤毛定位,该蛋白质先前被报道通过未确定的机制调节神经发生。初步数据显示,这种蛋白质在纤毛中调节Hedgehog信号传导,这是纤毛中最好的描述途径。研究这种新的纤毛蛋白和Hedgehog信号之间的相互作用将揭示胚胎神经发生的新调控机制,并展示纤毛蛋白质组学如何帮助解决大脑发育中长期存在的问题。通过系统地揭示RG纤毛使用的信号通路与时空分辨率,该项目还将为未来的神经发育研究绘制新的方向。该奖项反映了NSF的法定使命,并已被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xuecai Ge其他文献

Cilium proteomics reveals Numb as a positive regulator of the Hedgehog signaling pathway
纤毛蛋白质组学揭示 Numb 是 Hedgehog 信号通路的正调节因子
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoliang Liu;Patricia T. Yam;Wei;S. Schlienger;Oscar Torres Gutierrez;Eva Cai;Jingyi Zhang;A. Ting;Tess C Branon;M. Cayouette;F. Charron;Xuecai Ge
  • 通讯作者:
    Xuecai Ge

Xuecai Ge的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Structural and mechanistic studies of RNA-mediated enteroviral genome replication
职业:RNA介导的肠道病毒基因组复制的结构和机制研究
  • 批准号:
    2236996
  • 财政年份:
    2023
  • 资助金额:
    $ 137.14万
  • 项目类别:
    Continuing Grant
CAREER: Electrochemiluminescence in Microfluidics for Mechanistic Studies of Redox Reactions and Single Particle Sensing
职业:微流体中的电化学发光用于氧化还原反应和单粒子传感的机理研究
  • 批准号:
    2145378
  • 财政年份:
    2022
  • 资助金额:
    $ 137.14万
  • 项目类别:
    Continuing Grant
CAREER: Structural and Mechanistic Studies on a Iron-Sulfur Cluster-Based Nitric Oxide Sensor
职业:基于铁硫簇的一氧化氮传感器的结构和机理研究
  • 批准号:
    1846908
  • 财政年份:
    2019
  • 资助金额:
    $ 137.14万
  • 项目类别:
    Standard Grant
CAREER: Mechanistic Studies of Secondary Organic Aerosol Production from Biomass Burning Derived Precursors
职业:生物质燃烧衍生前体产生二次有机气溶胶的机理研究
  • 批准号:
    1753364
  • 财政年份:
    2018
  • 资助金额:
    $ 137.14万
  • 项目类别:
    Continuing Grant
CAREER: Quadruplet Codon Decoding - Mechanistic Studies and Application in Cellular Genetic Code Expansion
职业:四联体密码子解码 - 机制研究及其在细胞遗传密码扩展中的应用
  • 批准号:
    1553041
  • 财政年份:
    2016
  • 资助金额:
    $ 137.14万
  • 项目类别:
    Continuing Grant
CAREER: Mechanistic and Biosynthetic Studies of Dinoflagellate Bioluminescence
职业:甲藻生物发光的机理和生物合成研究
  • 批准号:
    1555138
  • 财政年份:
    2016
  • 资助金额:
    $ 137.14万
  • 项目类别:
    Standard Grant
CAREER: Mechanistic studies of the spore photoproduct lyase
职业:孢子光产物裂合酶的机理研究
  • 批准号:
    1454184
  • 财政年份:
    2015
  • 资助金额:
    $ 137.14万
  • 项目类别:
    Continuing Grant
CAREER: Mechanistic Studies of Phosphonate Biosynthesis and Degradation
职业:磷酸盐生物合成和降解的机理研究
  • 批准号:
    0748504
  • 财政年份:
    2008
  • 资助金额:
    $ 137.14万
  • 项目类别:
    Continuing Grant
CAREER: Mechanistic Studies of Tyrosine Derived Cofactors
职业:酪氨酸衍生辅因子的机制研究
  • 批准号:
    0747377
  • 财政年份:
    2008
  • 资助金额:
    $ 137.14万
  • 项目类别:
    Continuing Grant
CAREER: Mechanistic Studies and Modeling of Self-Emulsifying Drug Delivery Systems
职业:自乳化给药系统的机理研究和建模
  • 批准号:
    0748048
  • 财政年份:
    2008
  • 资助金额:
    $ 137.14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了