CAREER: Developing Techniques for Atom-Based Gravitational Wave Detection and Dark Matter Searches with a Multiplexed Optical Lattice Clock

职业:利用多路复用光学晶格钟开发基于原子的引力波探测和暗物质搜索技术

基本信息

  • 批准号:
    2143870
  • 负责人:
  • 金额:
    $ 80.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). General audience abstract:Optical atomic clocks are now the most precise and accurate tabletop measurement devices ever constructed by humankind, offering sensitivity to new and exotic physics. The PI has recently developed a new kind of atomic clock apparatus and has used it to demonstrate a comparison between two optical clocks at a precision below one part in 10^19. To give a sense of scale, this corresponds to resolving a difference in the rate the two clocks tick at that would result in them disagreeing with each other by only 1 second after 300 billion years. The PI and a graduate student will use this new apparatus to develop and test ways to use optical atomic clocks to search for dark matter and to detect gravitational waves. This project therefore has the potential to result in new tools for studying the universe through gravitational wave astronomy, and new ways to search for answers to one of the biggest mysteries in physics, the nature of dark matter. The PI will integrate these research topics into new demos and hands-on activities designed to introduce K-12 students to modern physics concepts. Students will engage with these activities at live shows and interactive events as part of the University of Wisconsin “Wonders of Physics” outreach program, with an emphasis on reaching rural communities and Native American reservations in Wisconsin. This project will thereby strengthen public support for modern physics research and help students develop intuition for atomic technologies and their applications. Technical audience abstract:This research project aims to explore and develop emerging applications of optical atomic clocks. The PI has recently demonstrated a first-of-its-kind “multiplexed" optical lattice clock apparatus that enables differential clock comparisons between two or more spatially resolved ensembles of strontium atoms within the same vacuum chamber. These differential measurements eliminate the detrimental effects of clock laser noise and common mode environmental fluctuations, pushing the limits of achievable clock stability and atom-atom coherence. Record differential clock stabilities and fractional frequency precision have now been demonstrated in this apparatus, with a clear path to further gains in performance. The PI and collaborators will use this multiplexed optical lattice clock to develop and demonstrate novel measurement sequences and data analysis techniques for future gravitational wave detection with space-based optical lattice clocks, including the blind injection of simulated gravitational wave signals at realistic strengths. The PI and collaborators will also use the multiplexed optical lattice clock to search for foggy dark matter in previously unexplored regions of parameter space, and to develop new techniques to search for other forms of dark matter. The PI will work with collaborators to develop interactive and engaging demos and inquiry-based activities to introduce K-12 students to modern physics concepts, including the basic principles of atomic clocks and their applications, and will assess their effectiveness using surveys.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分根据2021年美国救援计划法案(公法117-2)资助。摘要:光学原子钟现在是人类有史以来建造的最精确和最准确的桌面测量设备,对新的和外来的物理学具有灵敏度。PI最近开发了一种新的原子钟装置,并用它来演示两个光学钟之间的比较,精度低于1/10^19。为了给人一种规模感,这相当于解决两个时钟滴答的速度差异,这将导致它们在3000亿年后仅相差1秒。PI和一名研究生将使用这个新设备开发和测试使用光学原子钟来搜索暗物质和探测引力波的方法。因此,该项目有可能产生通过引力波天文学研究宇宙的新工具,以及寻找物理学中最大谜团之一暗物质性质答案的新方法。PI将把这些研究课题整合到新的演示和实践活动中,旨在向K-12学生介绍现代物理概念。学生将在现场表演和互动活动中参与这些活动,作为威斯康星州大学“物理学奇迹”外展计划的一部分,重点是到达威斯康星州的农村社区和美洲原住民保留地。因此,该项目将加强公众对现代物理研究的支持,并帮助学生培养对原子技术及其应用的直觉。技术观众摘要:本研究项目旨在探索和开发光学原子钟的新兴应用。 PI最近展示了一种首创的“多路复用”光学晶格时钟装置,该装置能够在同一真空室内的两个或更多个空间分辨的锶原子系综之间进行差分时钟比较。这些差分测量消除了时钟激光噪声和共模环境波动的不利影响,推动了可实现的时钟稳定性和原子-原子相干性的极限。记录差分时钟稳定性和小数频率精度现在已经证明了在这个装置中,一个明确的路径,以进一步提高性能。PI和合作者将使用这种多路复用光学晶格时钟来开发和演示新的测量序列和数据分析技术,用于未来使用天基光学晶格时钟进行引力波探测,包括以实际强度盲注入模拟引力波信号。PI和合作者还将使用多路复用光学晶格时钟在以前未探索的参数空间区域中搜索雾状暗物质,并开发新技术来搜索其他形式的暗物质。PI将与合作者合作开发互动和引人入胜的演示和基于探究的活动,向K-12学生介绍现代物理概念,包括原子钟的基本原理及其应用,并将通过调查评估其有效性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reducing the Instability of an Optical Lattice Clock Using Multiple Atomic Ensembles
  • DOI:
    10.1103/physrevx.14.011006
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    Xin Zheng;J. Dolde;S. Kolkowitz
  • 通讯作者:
    Xin Zheng;J. Dolde;S. Kolkowitz
Optical atomic clock aboard an Earth-orbiting space station (OACESS): enhancing searches for physics beyond the standard model in space
地球轨道空间站(OACESS)上的光学原子钟:加强对太空标准模型之外的物理学的搜索
  • DOI:
    10.1088/2058-9565/ac9f2b
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Schkolnik, Vladimir;Budker, Dmitry;Fartmann, Oliver;Flambaum, Victor;Hollberg, Leo;Kalaydzhyan, Tigran;Kolkowitz, Shimon;Krutzik, Markus;Ludlow, Andrew;Newbury, Nathan
  • 通讯作者:
    Newbury, Nathan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shimon Kolkowitz其他文献

Cold atoms in space: community workshop summary and proposed road-map
  • DOI:
    10.1140/epjqt/s40507-022-00147-w
  • 发表时间:
    2022-11-20
  • 期刊:
  • 影响因子:
    5.600
  • 作者:
    Iván Alonso;Cristiano Alpigiani;Brett Altschul;Henrique Araújo;Gianluigi Arduini;Jan Arlt;Leonardo Badurina;Antun Balaž;Satvika Bandarupally;Barry C. Barish;Michele Barone;Michele Barsanti;Steven Bass;Angelo Bassi;Baptiste Battelier;Charles F. A. Baynham;Quentin Beaufils;Aleksandar Belić;Joel Bergé;Jose Bernabeu;Andrea Bertoldi;Robert Bingham;Sébastien Bize;Diego Blas;Kai Bongs;Philippe Bouyer;Carla Braitenberg;Christian Brand;Claus Braxmaier;Alexandre Bresson;Oliver Buchmueller;Dmitry Budker;Luís Bugalho;Sergey Burdin;Luigi Cacciapuoti;Simone Callegari;Xavier Calmet;Davide Calonico;Benjamin Canuel;Laurentiu-Ioan Caramete;Olivier Carraz;Donatella Cassettari;Pratik Chakraborty;Swapan Chattopadhyay;Upasna Chauhan;Xuzong Chen;Yu-Ao Chen;Maria Luisa Chiofalo;Jonathon Coleman;Robin Corgier;J. P. Cotter;A. Michael Cruise;Yanou Cui;Gavin Davies;Albert De Roeck;Marcel Demarteau;Andrei Derevianko;Marco Di Clemente;Goran S. Djordjevic;Sandro Donadi;Olivier Doré;Peter Dornan;Michael Doser;Giannis Drougakis;Jacob Dunningham;Sajan Easo;Joshua Eby;Gedminas Elertas;John Ellis;David Evans;Pandora Examilioti;Pavel Fadeev;Mattia Fanì;Farida Fassi;Marco Fattori;Michael A. Fedderke;Daniel Felea;Chen-Hao Feng;Jorge Ferreras;Robert Flack;Victor V. Flambaum;René Forsberg;Mark Fromhold;Naceur Gaaloul;Barry M. Garraway;Maria Georgousi;Andrew Geraci;Kurt Gibble;Valerie Gibson;Patrick Gill;Gian F. Giudice;Jon Goldwin;Oliver Gould;Oleg Grachov;Peter W. Graham;Dario Grasso;Paul F. Griffin;Christine Guerlin;Mustafa Gündoğan;Ratnesh K. Gupta;Martin Haehnelt;Ekim T. Hanımeli;Leonie Hawkins;Aurélien Hees;Victoria A. Henderson;Waldemar Herr;Sven Herrmann;Thomas Hird;Richard Hobson;Vincent Hock;Jason M. Hogan;Bodil Holst;Michael Holynski;Ulf Israelsson;Peter Jeglič;Philippe Jetzer;Gediminas Juzeliūnas;Rainer Kaltenbaek;Jernej F. Kamenik;Alex Kehagias;Teodora Kirova;Marton Kiss-Toth;Sebastian Koke;Shimon Kolkowitz;Georgy Kornakov;Tim Kovachy;Markus Krutzik;Mukesh Kumar;Pradeep Kumar;Claus Lämmerzahl;Greg Landsberg;Christophe Le Poncin-Lafitte;David R. Leibrandt;Thomas Lévèque;Marek Lewicki;Rui Li;Anna Lipniacka;Christian Lisdat;Mia Liu;J. L. Lopez-Gonzalez;Sina Loriani;Jorma Louko;Giuseppe Gaetano Luciano;Nathan Lundblad;Steve Maddox;M. A. Mahmoud;Azadeh Maleknejad;John March-Russell;Didier Massonnet;Christopher McCabe;Matthias Meister;Tadej Mežnaršič;Salvatore Micalizio;Federica Migliaccio;Peter Millington;Milan Milosevic;Jeremiah Mitchell;Gavin W. Morley;Jürgen Müller;Eamonn Murphy;Özgür E. Müstecaplıoğlu;Val O’Shea;Daniel K. L. Oi;Judith Olson;Debapriya Pal;Dimitris G. Papazoglou;Elizabeth Pasatembou;Mauro Paternostro;Krzysztof Pawlowski;Emanuele Pelucchi;Franck Pereira dos Santos;Achim Peters;Igor Pikovski;Apostolos Pilaftsis;Alexandra Pinto;Marco Prevedelli;Vishnupriya Puthiya-Veettil;John Quenby;Johann Rafelski;Ernst M. Rasel;Cornelis Ravensbergen;Mirko Reguzzoni;Andrea Richaud;Isabelle Riou;Markus Rothacher;Albert Roura;Andreas Ruschhaupt;Dylan O. Sabulsky;Marianna Safronova;Ippocratis D. Saltas;Leonardo Salvi;Muhammed Sameed;Pandey Saurabh;Stefan Schäffer;Stephan Schiller;Manuel Schilling;Vladimir Schkolnik;Dennis Schlippert;Piet O. Schmidt;Harald Schnatz;Jean Schneider;Ulrich Schneider;Florian Schreck;Christian Schubert;Armin Shayeghi;Nathaniel Sherrill;Ian Shipsey;Carla Signorini;Rajeev Singh;Yeshpal Singh;Constantinos Skordis;Augusto Smerzi;Carlos F. Sopuerta;Fiodor Sorrentino;Paraskevas Sphicas;Yevgeny V. Stadnik;Petruta Stefanescu;Marco G. Tarallo;Silvia Tentindo;Guglielmo M. Tino;Jonathan N. Tinsley;Vincenza Tornatore;Philipp Treutlein;Andrea Trombettoni;Yu-Dai Tsai;Philip Tuckey;Melissa A. Uchida;Tristan Valenzuela;Mathias Van Den Bossche;Ville Vaskonen;Gunjan Verma;Flavio Vetrano;Christian Vogt;Wolf von Klitzing;Pierre Waller;Reinhold Walser;Eric Wille;Jason Williams;Patrick Windpassinger;Ulrich Wittrock;Peter Wolf;Marian Woltmann;Lisa Wörner;André Xuereb;Mohamed Yahia;Efe Yazgan;Nan Yu;Nassim Zahzam;Emmanuel Zambrini Cruzeiro;Mingsheng Zhan;Xinhao Zou;Jure Zupan;Erik Zupanič
  • 通讯作者:
    Erik Zupanič
The missing link in gravitational-wave astronomy
  • DOI:
    10.1007/s10686-021-09713-z
  • 发表时间:
    2021-04-29
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Manuel Arca Sedda;Christopher P. L. Berry;Karan Jani;Pau Amaro-Seoane;Pierre Auclair;Jonathon Baird;Tessa Baker;Emanuele Berti;Katelyn Breivik;Chiara Caprini;Xian Chen;Daniela Doneva;Jose M. Ezquiaga;K. E. Saavik Ford;Michael L. Katz;Shimon Kolkowitz;Barry McKernan;Guido Mueller;Germano Nardini;Igor Pikovski;Surjeet Rajendran;Alberto Sesana;Lijing Shao;Nicola Tamanini;Niels Warburton;Helvi Witek;Kaze Wong;Michael Zevin
  • 通讯作者:
    Michael Zevin

Shimon Kolkowitz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Developing Advanced Cryptanalysis Techniques for Symmetric-key Primitives with Real-world Public-key Applications
使用现实世界的公钥应用开发对称密钥原语的高级密码分析技术
  • 批准号:
    24K20733
  • 财政年份:
    2024
  • 资助金额:
    $ 80.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigating Bacterial Dynamics and Developing New Antimicrobial Agents in Cambodia Using Innovative Genome Analysis Techniques
利用创新的基因组分析技术研究柬埔寨的细菌动力学并开发新的抗菌剂
  • 批准号:
    23KK0151
  • 财政年份:
    2023
  • 资助金额:
    $ 80.04万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Developing valuable operational healthcare applications using quantum computing techniques
使用量子计算技术开发有价值的运营医疗保健应用程序
  • 批准号:
    10072653
  • 财政年份:
    2023
  • 资助金额:
    $ 80.04万
  • 项目类别:
    Feasibility Studies
Detecting optical counterparts to gravitational-wave events with GOTO and developing techniques to enable accurate measurements of gravitational waves
使用 GOTO 检测引力波事件的光学对应物,并开发能够精确测量引力波的技术
  • 批准号:
    2903944
  • 财政年份:
    2023
  • 资助金额:
    $ 80.04万
  • 项目类别:
    Studentship
Developing novel techniques for hydride characterisation in irradiated Zr alloys
开发辐照锆合金氢化物表征新技术
  • 批准号:
    2888266
  • 财政年份:
    2023
  • 资助金额:
    $ 80.04万
  • 项目类别:
    Studentship
Developing an Automated Welding Robot Using Machine Learning and Advanced Control Techniques
利用机器学习和先进控制技术开发自动焊接机器人
  • 批准号:
    555751-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 80.04万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Developing Diffusion Magnetic Resonance Imaging Techniques To Investigate White Matter Microstructure in Multiple Sclerosis
开发扩散磁共振成像技术来研究多发性硬化症的白质微观结构
  • 批准号:
    548034-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 80.04万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Developing novel phage-based techniques for removing spoilage bacteria from meat products
开发基于噬菌体的新型技术来去除肉制品中的腐败细菌
  • 批准号:
    2737528
  • 财政年份:
    2022
  • 资助金额:
    $ 80.04万
  • 项目类别:
    Studentship
Developing and testing the delivery of mindful self-compassion techniques via a mobile application to reduce emotional eating: A pilot feasibility study
通过移动应用程序开发和测试正念自我同情技术以减少情绪化饮食:试点可行性研究
  • 批准号:
    486186
  • 财政年份:
    2022
  • 资助金额:
    $ 80.04万
  • 项目类别:
    Studentship Programs
Developing health monitoring and prediction techniques of soil behaviours based on dynamic wave signals
开发基于动态波信号的土壤行为健康监测和预测技术
  • 批准号:
    22K14322
  • 财政年份:
    2022
  • 资助金额:
    $ 80.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了