CAREER: Understanding metal/support interactions in catalysis with statistical learning
职业:通过统计学习了解催化中金属/载体的相互作用
基本信息
- 批准号:2143941
- 负责人:
- 金额:$ 57.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Heterogeneous catalysts consisting of metal nanoparticles supported on oxide surfaces are essential for promoting rapid and energy efficient manufacturing of fuels and chemicals, as well as controlling emissions of environmental pollutants. Catalyst research and development has historically relied primarily on experimental methods – often involving time- and resource-intensive materials screening. In recent years, however, increasing effort has been directed toward predictive design of advanced catalyst technologies, enabled by advances in theory, computational methods, and artificial intelligence. The project develops and applies advanced simulation tools, based on machine learning, which will be used to establish strategies for controlling metal/support interactions to enhance catalyst stability, activity, and selectivity. Models built with these tools will accelerate research efforts to design new types of catalysts consisting of either isolated metal atoms or small clusters dispersed on high-surface area metal oxide supports. In addition to improving catalyst reactivity, product selectivity, and stability, the project will enable discovery and design of catalysts that reduce the amount of expensive and strategic metals (such as platinum, palladium, and rhodium) used widely in chemical manufacturing and pollution control. Beyond improving catalytic technologies, the project will extend educational efforts by establishing an outreach program for underserved communities through the Tapia Center for Excellence and Equity in Education at Rice University. Synergistic interactions between metal nanoparticles and oxide supports are known to influence catalyst performance. The goal of the project is to develop a theoretical framework that uses statistical-based machine learning, together with density functional theory, to understand metal/support interactions (MSIs) in heterogeneous catalysis. The first objective is to apply computationally efficient statistical learning methodologies to identify the physical descriptors of metal binding on oxide supports, which in turn can be used to predict metal sintering rates and cluster morphology. The second objective is to predict catalytic activity and selectivity by constructing models that relate MSIs to adsorbate binding energies and the associated kinetic barriers that control mechanisms for prototypical model reactions, such as carbon monoxide oxidation. The third objective is to apply thermodynamic analyses to understand the stability of support modifications that are strategically introduced to enhance MSIs. Thus, the overall methodology not only will identify desirable surface modifications for controlling catalytic behavior by tuning MSIs, but also will predict the environments in which such modifications can be achieved most readily.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由金属纳米颗粒负载在氧化物表面的多相催化剂对于促进快速、高效地制造燃料和化学品以及控制环境污染物的排放至关重要。催化剂的研究和开发历来主要依赖于实验方法--通常涉及耗时和资源密集型的材料筛选。然而,近年来,由于理论、计算方法和人工智能的进步,人们越来越多地致力于先进催化剂技术的预测设计。该项目开发和应用基于机器学习的先进模拟工具,将用于建立控制金属/载体相互作用的策略,以提高催化剂的稳定性、活性和选择性。用这些工具建立的模型将加速研究工作,以设计由孤立的金属原子或分散在高比表面积金属氧化物载体上的小团簇组成的新型催化剂。除了提高催化剂的反应性、产品选择性和稳定性外,该项目还将使发现和设计的催化剂能够减少化学制造和污染控制中广泛使用的昂贵和战略金属(如铂、钯和铑)的数量。除了改进催化技术,该项目还将通过莱斯大学塔皮亚卓越和公平教育中心为服务不足的社区建立一个外联计划,从而扩大教育努力。金属纳米颗粒和氧化物载体之间的协同作用会影响催化剂的性能。该项目的目标是开发一种理论框架,使用基于统计的机器学习和密度泛函理论来理解多相催化中的金属/载体相互作用(MSI)。第一个目标是应用计算高效的统计学习方法来识别金属在氧化物载体上结合的物理描述符,这反过来可以用来预测金属烧结速度和团簇形态。第二个目标是通过构建模型来预测催化活性和选择性,该模型将MSI与吸附结合能和相关的动力学势垒联系起来,这些动力学势垒控制着原型模型反应的机理,如一氧化碳氧化。第三个目标是应用热力学分析来了解为增强MSI而战略性引入的支撑件的稳定性。因此,总体方法不仅将确定通过调整MSI来控制催化行为的理想表面修饰,还将预测最容易实现此类修饰的环境。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Senftle其他文献
Thomas Senftle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Senftle', 18)}}的其他基金
CAS: Molecular Design of Photoactive Covalent Organic Frameworks Capable of Reductive and Oxidative Degradation of Perfluoroalkyl Substances
CAS:能够还原和氧化降解全氟烷基物质的光活性共价有机框架的分子设计
- 批准号:
2247729 - 财政年份:2023
- 资助金额:
$ 57.21万 - 项目类别:
Standard Grant
Collaborative Research: Controlling Metal-Oxide Interface Chemistry for New C-H Activation Catalysts
合作研究:控制新型 C-H 活化催化剂的金属-氧化物界面化学
- 批准号:
2329471 - 财政年份:2023
- 资助金额:
$ 57.21万 - 项目类别:
Standard Grant
相似国自然基金
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Understanding Joining Mechanisms in Dissimilar Metal Additive Manufacturing
职业:了解异种金属增材制造中的连接机制
- 批准号:
2338253 - 财政年份:2024
- 资助金额:
$ 57.21万 - 项目类别:
Standard Grant
CAREER: Understanding and controlling the sintering of metal powders with nanoscale additives
职业:了解和控制纳米级添加剂金属粉末的烧结
- 批准号:
2340688 - 财政年份:2024
- 资助金额:
$ 57.21万 - 项目类别:
Continuing Grant
CAREER: Understanding Electrochemical Metal Extraction in Molten Salts from First Principles
职业:从第一原理了解熔盐中的电化学金属萃取
- 批准号:
2340765 - 财政年份:2024
- 资助金额:
$ 57.21万 - 项目类别:
Continuing Grant
CAREER: Understanding multiscale sintering kinetics and microstructural evolution in binder-based metal additive manufacturing
职业:了解基于粘合剂的金属增材制造中的多尺度烧结动力学和微观结构演变
- 批准号:
2237433 - 财政年份:2023
- 资助金额:
$ 57.21万 - 项目类别:
Continuing Grant
CAREER: Understanding Metal-Micelle Cooperativity for Selective Catalysis in Water
职业:了解水中选择性催化的金属胶束协同作用
- 批准号:
2345856 - 财政年份:2023
- 资助金额:
$ 57.21万 - 项目类别:
Continuing Grant
CAREER: Understanding thermal phase change processes in metal additive manufacturing
职业:了解金属增材制造中的热相变过程
- 批准号:
2047123 - 财政年份:2021
- 资助金额:
$ 57.21万 - 项目类别:
Continuing Grant
CAREER: Understanding and Overcoming the Fundamental Barriers to the Direct Reduction of Aluminum Hydroxide to Aluminum Metal
职业:了解并克服氢氧化铝直接还原为金属铝的基本障碍
- 批准号:
2047851 - 财政年份:2021
- 资助金额:
$ 57.21万 - 项目类别:
Standard Grant
CAREER: Understanding Metal-Micelle Cooperativity for Selective Catalysis in Water
职业:了解水中选择性催化的金属胶束协同作用
- 批准号:
2044778 - 财政年份:2021
- 资助金额:
$ 57.21万 - 项目类别:
Continuing Grant
CAREER: Understanding Chemical, Structural and Redox Properties of Disordered Metal Oxides
职业:了解无序金属氧化物的化学、结构和氧化还原性质
- 批准号:
2045570 - 财政年份:2021
- 资助金额:
$ 57.21万 - 项目类别:
Continuing Grant
CAREER: Spectrokinetic Studies for Understanding Metal-Support Interactions in Catalytic Oxidation of Ethanol
职业:用于了解乙醇催化氧化中金属-载体相互作用的光谱动力学研究
- 批准号:
1847655 - 财政年份:2019
- 资助金额:
$ 57.21万 - 项目类别:
Standard Grant