CAREER: Deciphering Mechanisms Underlying Chemical Adaptation in Insects

职业:破译昆虫化学适应的机制

基本信息

  • 批准号:
    2144082
  • 负责人:
  • 金额:
    $ 116.19万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Act of 2021 (Public Law 117-2). The “arms race” between plants and insects has driven their coevolution for hundreds of millions of years. Once damaged by herbivores, plants release induced volatile organic compounds called herbivore-induced plant volatiles (HIPVs). It has been well documented that HIPVs play fundamental roles in insect-plant interactions, but knowledge of how herbivores adjust and adapt to plant HIPVs remains largely absent. The research objective of this CAREER proposal is to understand the mechanisms underlying herbivores’ adaptation to plant HIPVs, attempting to link insect olfaction with evolutionary resilience to pesticides, using the herbivorous Colorado potato beetle and its host plant, potato, as a study system. A key innovation in this project is that it will uncover previously uncharacterized mechanisms of insect-plant interactions and evolution of pesticide resistance. The interdisciplinary nature of this project provides a unique educational platform for students from diverse backgrounds, especially underrepresented groups. Three educational goals of the project are to: (1) develop an innovative, hands-on experiment-based course that includes modern molecular techniques; (2) engage underrepresented students from high schools and undergraduates at Penn State in insect science research through an existing EnvironMentors program; and (3) develop and deliver the “Bugs Win” multigenerational family program at the Pasto Agricultural Museum to interest youth and their families in science. These educational activities will expose larger and more diverse groups to insect science and should make basic research more inclusive. Despite the known roles of HIPVs in insect-plant interactions, it remains unclear which mechanisms assist insects in adapting to these volatile compounds. The enzymes involved in rapid antennal sensory processing of HIPVs may be co-opted by other processes such as xenobiotic detoxification. To test this hypothesis, research is designed to integrate powerful structural biology, functional genomics, enzymology, and insect behavior approaches to functionally dissect and understand the roles of enzymes in insect olfaction and detoxification pathways. In addition, the integrated education program will ensure active learning outcomes, engage students in Entomology and Biology research, enhance students’ critical thinking and problem-solving skills, and prepare the next generation of young scientists with advanced tools and techniques along with fundamental knowledge. This work will significantly enhance our understanding of physiological mechanisms of insect-plant interactions and of xenobiotic adaptation in insects. Completion of this project may ultimately contribute to the development of resistance-free pesticides for precision pest control and beneficial insect conservation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来自《2021年美国救援法》(公法117-2)。几亿年来,植物和昆虫之间的“军备竞赛”推动了它们的共同进化。一旦受到食草动物的破坏,植物就会释放出被称为食草动物诱导的植物挥发物(HIPV)的挥发性有机化合物。HIPV在昆虫-植物相互作用中起着重要的作用,但关于草食动物如何适应植物HIPV的知识仍然很少。这项职业计划的研究目标是了解草食动物适应植物HIPV的机制,试图以科罗拉多州草食性马铃薯甲虫及其寄主植物马铃薯为研究系统,将昆虫嗅觉与对杀虫剂的进化弹性联系起来。该项目的一个关键创新是,它将揭示以前未知的昆虫-植物相互作用和杀虫剂抗药性进化的机制。该项目的跨学科性质为来自不同背景的学生,特别是代表人数不足的群体提供了一个独特的教育平台。该项目的三个教育目标是:(1)开发一门创新的、以动手为基础的课程,其中包括现代分子技术;(2)通过现有的环境管理员计划,让宾夕法尼亚州立大学未被充分代表的高中生和本科生参与昆虫科学研究;以及(3)在帕斯托农业博物馆开发和提供“虫子赢”多代家庭计划,以吸引年轻人及其家庭对科学感兴趣。这些教育活动将使更多、更多样化的群体接触昆虫科学,并应使基础研究更具包容性。尽管已知HIPV在昆虫-植物相互作用中的作用,但尚不清楚哪些机制有助于昆虫适应这些挥发性化合物。参与HIPV快速触角感觉处理的酶可能被其他过程所替代,如异物解毒。为了验证这一假说,研究旨在整合强大的结构生物学、功能基因组学、酶学和昆虫行为方法,从功能上剖析和了解酶在昆虫嗅觉和解毒途径中的作用。此外,整合教育计划将确保积极的学习结果,让学生参与昆虫学和生物学研究,提高学生的批判性思维和解决问题的技能,并培养拥有先进工具和技术以及基础知识的下一代青年科学家。这项工作将极大地提高我们对昆虫-植物相互作用的生理机制和昆虫对异种生物适应的理解。该项目的完成可能最终有助于无抗药性杀虫剂的开发,用于精确的虫害控制和有益的昆虫保护。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fang Zhu其他文献

Highly efficient photosynthesis of hydrogen peroxide in ambient conditions
环境条件下过氧化氢的高效光合作用
Enhancing enrichment ability of a nanoporous carbon based solid-phase microextraction device by a morphological modulation strategy
通过形态调制策略增强纳米孔碳基固相微萃取装置的富集能力
  • DOI:
    10.1016/j.aca.2018.10.063
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Qingkun Hu;Shuqin Liu;Xiao Chen;Jianqiao Xu;Fang Zhu;Gangfeng Ouyang
  • 通讯作者:
    Gangfeng Ouyang
Localization Algorithm for Large Scale Wireless Sensor Networks Based on Fast-SVM
基于Fast-SVM的大规模无线传感器网络定位算法
  • DOI:
    10.1007/s11277-016-3665-2
  • 发表时间:
    2016-09
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Fang Zhu;Junfang Wei
  • 通讯作者:
    Junfang Wei
Development of a novel solid phase microextraction calibration method for semi-solid tissue sampling
开发一种用于半固体组织取样的新型固相微萃取校准方法
  • DOI:
    10.1016/j.scitotenv.2018.11.226
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Ruifen Jiang;Wei Lin;Lifang Zhang;Fang Zhu;Gangfeng Ouyang
  • 通讯作者:
    Gangfeng Ouyang
Modulating the Biofunctionality of Metal–Organic‐Framework‐Encapsulated Enzymes through Controllable Embedding Patterns
通过可控嵌入模式调节金属-有机-框架-封装酶的生物功能
  • DOI:
    10.1002/ange.201913231
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guosheng Chen;Xiaoxue Kou;Siming Huang;Linjing Tong;Yujian Shen;Wangshu Zhu;Fang Zhu;Gangfeng Ouyang
  • 通讯作者:
    Gangfeng Ouyang

Fang Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 116.19万
  • 项目类别:
    Standard Grant
Deciphering the Competing Mechanisms of Li Microstructure Formation in Solid Electrolytes with Nuclear Magnetic Resonance Spectroscopy (NMR) and Imaging (MRI)
利用核磁共振波谱 (NMR) 和成像 (MRI) 解读固体电解质中锂微结构形成的竞争机制
  • 批准号:
    2319151
  • 财政年份:
    2024
  • 资助金额:
    $ 116.19万
  • 项目类别:
    Continuing Grant
Deciphering newly uncovered mechanisms of fluid regulation in bacterial RNA-protein networks
破译细菌 RNA-蛋白质网络中新发现的液体调节机制
  • 批准号:
    2349832
  • 财政年份:
    2024
  • 资助金额:
    $ 116.19万
  • 项目类别:
    Standard Grant
Deciphering the mechanisms of object manipulation with viscoelastic fluids
破译粘弹性流体物体操纵的机制
  • 批准号:
    DE240101027
  • 财政年份:
    2024
  • 资助金额:
    $ 116.19万
  • 项目类别:
    Discovery Early Career Researcher Award
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319096
  • 财政年份:
    2024
  • 资助金额:
    $ 116.19万
  • 项目类别:
    Standard Grant
Deciphering the mechanisms facilitating rapid uterine invasion of implanting human embryos
破译促进植入人类胚胎快速侵入子宫的机制
  • 批准号:
    BB/Y005120/1
  • 财政年份:
    2024
  • 资助金额:
    $ 116.19万
  • 项目类别:
    Research Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319098
  • 财政年份:
    2024
  • 资助金额:
    $ 116.19万
  • 项目类别:
    Standard Grant
Deciphering activation and evolutionary mechanisms of the paired NLR immune receptors based on paralog suppression and neofunctionalization
基于旁系同源抑制和新功能化,破译配对 NLR 免疫受体的激活和进化机制
  • 批准号:
    23H02213
  • 财政年份:
    2023
  • 资助金额:
    $ 116.19万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Deciphering Mechanisms of Astrocyte-BBB Interaction in Normal and Ischemic Stroke
解读正常和缺血性中风中星形胶质细胞-BBB相互作用的机制
  • 批准号:
    10585849
  • 财政年份:
    2023
  • 资助金额:
    $ 116.19万
  • 项目类别:
Deciphering and Overcoming CDK4/6 Inhibitor Resistance Mechanisms Using Network Structure Theory
利用网络结构理论破译和克服 CDK4/6 抑制剂耐药机制
  • 批准号:
    23K14156
  • 财政年份:
    2023
  • 资助金额:
    $ 116.19万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了