CAREER: Utilization of Unique Atomic and Nuclear Properties of Gadolinium in Nuclear and Radiological Sciences

职业:在核和放射科学中利用钆独特的原子和核特性

基本信息

  • 批准号:
    2144226
  • 负责人:
  • 金额:
    $ 43.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-15 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Gadolinium (Gd) is an intriguing element that has a variety of interesting properties. One of its isotopes, Gd-157, has the largest rate of capturing thermal neutrons than all other known stable nuclei. In Gadolinium Neutron Capture Therapy (GdNCT), the radiation emitted as a result of neutron capture can be used for cancer treatment. A striking advantage of GdNCT compared to other radiation therapy treatments is that the initial pharmaceutical solution with the gadolinium content is non-radioactive. Nuclear and atomic excited states are induced only after neutron interactions, and the resultant radiations can be used to destroy nearby cancer cells. The focus of this project will be the characterization of the radiations associated with GdNCT and their radiological dose using various gadolinium nanoparticle-based materials. The materials will be irradiated by neutrons from the UMass Lowell Research Reactor (UMLRR), and the resultant gamma rays and electrons will be measured using a new detector array recently designed at UMass Lowell. In parallel, the potential use of gadolinium in a novel thin-film neutron and x-ray detector will be studied. The radiation detection technologies are at the forefront of all experimental discoveries in low and high energy nuclear physics. New technologies are needed in security applications, counter terrorism, nuclear medicine imaging and scanning. Proposed work on a novel radiation detection technology based on thin films with Gd layer will advance the field of radiation detection with designs of small flexible films capable of measuring doses of x-rays and neutrons. The involvement of undergraduate and graduate students will be a strong emphasis of these research activities. Students from three different accredited graduate programs: (1) Radiological Sciences and Protection, (2) Medical Physics and (3) Physics and Applied Physics, will contribute to the activities proposed herein. The capabilities developed during this project will be used to launch a new course, “Advanced Radiological Measurements Laboratory”, in the UMass Lowell Physics and Applied Physics Department.The nuclear de-excitation of gadolinium after neutron capture results in the emission of gamma rays and internal conversion electrons, followed by the emission of Auger electrons to resolve atomic excitations. These electrons can efficiently deliver local dose to tumors saturated with a pharmaceutical solution containing gadolinium. In this project, the resultant gamma rays and electrons produced by neutron capture reactions on gadolinium in nanoparticle-based materials will be measured using the combination of high-resolution gamma-ray spectroscopy and high-efficiency calorimetry. Details of correlated emissions will be probed using fast nanosecond coincidence methods. Comprehensive computational simulations of the capture cascades and the dose distributions in local tissue and neighboring organs also will be performed based on validated physics models and new improved correlated atomic and nuclear data libraries. The size and morphology of the nanoparticles will be studied to control and optimize the range of emitted electrons to potentially tune the local dose to the tumor. Likewise, high-fidelity Monte-Carlo radiation transport simulations will guide design and development of the thin-film neutron and x-ray detector.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
钆(Gd)是一种有趣的元素,具有各种有趣的特性。它的一种同位素Gd-157比所有其他已知的稳定核具有最大的捕获热中子的速率。在钆中子俘获疗法(GdNCT)中,由于中子俘获而发射的辐射可用于癌症治疗。与其他放射疗法相比,GdNCT的一个显著优势是含有钆的初始药物溶液是非放射性的。只有在中子相互作用后才能诱导出核和原子的激发态,由此产生的辐射可以用来摧毁附近的癌细胞。该项目的重点是使用各种钆纳米颗粒材料表征与GdNCT相关的辐射及其放射剂量。这些材料将被来自马萨诸塞州洛厄尔研究反应堆(UMLRR)的中子照射,产生的伽马射线和电子将使用马萨诸塞州洛厄尔最近设计的新探测器阵列进行测量。与此同时,将研究钆在新型薄膜中子和X射线探测器中的潜在用途。辐射探测技术是低能和高能核物理实验发现的前沿。安全应用、反恐、核医学成像和扫描都需要新技术。基于具有Gd层的薄膜的新型辐射探测技术的拟议工作将通过能够测量X射线和中子剂量的小柔性薄膜的设计来推进辐射探测领域。本科生和研究生的参与将是这些研究活动的重点。来自三个不同的认证研究生课程的学生:(1)放射科学和保护,(2)医学物理学和(3)物理学和应用物理学,将有助于本文提出的活动。该项目开发的能力将用于在麻省大学洛厄尔物理和应用物理系开设一门新课程,“高级放射性测量实验室”,中子俘获后钆的核去激发导致伽马射线和内部转换电子的发射,随后是俄歇电子的发射,以解决原子激发。这些电子可以有效地将局部剂量递送到用含有钆的药物溶液饱和的肿瘤。在该项目中,将使用高分辨率伽马射线光谱和高效量热法相结合的方法来测量纳米材料中钆的中子捕获反应产生的伽马射线和电子。相关发射的细节将使用快速纳秒符合方法进行探测。还将根据经验证的物理模型和新改进的相关原子和核数据库,对局部组织和邻近器官中的捕获级联和剂量分布进行全面的计算模拟。将研究纳米颗粒的大小和形态,以控制和优化发射电子的范围,从而可能调整肿瘤的局部剂量。同样,高保真蒙特-卡罗辐射输运模拟将指导薄膜中子和X射线探测器的设计和开发。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marian Jandel其他文献

Actinide ENDF/B-VII cross-section evaluations and validation testing
  • DOI:
    10.1016/j.anucene.2008.11.011
  • 发表时间:
    2009-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mark B. Chadwick;Robert C. Little;Toshihiko Kawano;Patrick Talou;David Viera;Marian Jandel;Todd A. Bredeweg;Morgan C. White;Anton P. Tonchev;John A. Becker
  • 通讯作者:
    John A. Becker
Preparation of iridium targets by electrodeposition for neutron capture cross section measurements
  • DOI:
    10.1007/s10967-015-4607-2
  • 发表时间:
    2015-11-18
  • 期刊:
  • 影响因子:
    1.600
  • 作者:
    Evelyn M. Bond;W. Allen Moody;Charles Arnold;Todd A. Bredeweg;Marian Jandel;Gencho Y. Rusev
  • 通讯作者:
    Gencho Y. Rusev

Marian Jandel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Data-enabled Pathways to Equity in Cyberinfrastructure Utilization for Scientific Discovery
利用数据实现科学发现的网络基础设施公平之路
  • 批准号:
    2346631
  • 财政年份:
    2024
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Utilization of Prior Cultural Features
博士论文研究:利用先前的文化特征
  • 批准号:
    2342127
  • 财政年份:
    2024
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Standard Grant
THUNDER - THermochemical storage Utilization eNabling Data centre seasonal Energy Recovery
THUNDER - 热化学存储利用 eNabling 数据中心季节性能源回收
  • 批准号:
    10088548
  • 财政年份:
    2024
  • 资助金额:
    $ 43.8万
  • 项目类别:
    EU-Funded
Evaluation of "Plain Japanese" training for medical professionals: Factors promoting and limiting its utilization in practical
医疗专业人员“简单日语”培训的评价:促进和限制其实际应用的因素
  • 批准号:
    24K20181
  • 财政年份:
    2024
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
A voice to the voiceless: Longitudinal patient-reported outcomes, experiences, social determinants of health and health services utilization after major neonatal surgery
向无声者发出声音:重大新生儿手术后患者纵向报告的结果、经历、健康和卫生服务利用的社会决定因素
  • 批准号:
    478053
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Operating Grants
Applied research towards practical use of Devanagari OCR and utilization of text database
天城文 OCR 实用化和文本数据库利用的应用研究
  • 批准号:
    23H00564
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on organization and utilization of documents and materials related to Minamata Disease
水俣病相关文献资料的整理与利用研究
  • 批准号:
    23K11783
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of porous materials that enable the effective utilization of environmental carbon dioxide
开发能够有效利用环境二氧化碳的多孔材料
  • 批准号:
    22KF0224
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Proposal of effective utilization of polyphenols as functional food ingredients for realization of a healthy longevity society
有效利用多酚作为功能性食品成分以实现健康长寿社会的提案
  • 批准号:
    23K10889
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RAPID: Assessing Evidence for Marine Resource Utilization at Eroding Coastal Sites in Northern Iceland
RAPID:评估冰岛北部侵蚀沿海地区海洋资源利用的证据
  • 批准号:
    2332775
  • 财政年份:
    2023
  • 资助金额:
    $ 43.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了