CAREER: Bottom-up construction of re-configurable entanglements toward polymer networks with switchable toughness

职业:自下而上构建具有可切换韧性的聚合物网络的可重新配置缠结

基本信息

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).NON-TECHNICAL SUMMARY:Polymer networks are ubiquitous in our world, manifested and widely utilized in the form of adhesives, rubbers, and gels. The ability of such materials to resist fracture is critical to their performance and longevity in many applications. Indeed, images of fields covered with discarded tires illustrate the prospect for mechanically damaged polymer networks. Improvements in the toughness of polymer networks hinge on a deeper understanding of the fundamental relationship between how polymer chains are connected at the molecular level and the fracture resistance at the macroscopic level. Specifically, entanglements -- i.e., polymer chains tangled within a network -- have been reported to protect materials against fracture; however, molecular underpinnings of this phenomenon remain unclear. This project aims to develop precise methods to install, understand the effects of, and manipulate trapped entanglements in polymer networks to ultimately improve their fracture resistance and advance the fundamentals of polymer science.Additionally, through a combination of course-based research experiences for undergraduates, demonstrations for local schools, and remote research experiences for teachers, this project will educate the public on the fundamentals of polymer science in general, and the significance of polymer networks in particular. These efforts will nurture in future generations of students an appreciation for materials science research and will help them to consider careers in STEM. TECHNICAL SUMMARY:The central objective of this project is to develop molecularly-precise control and understanding of trapped entanglements and their effects on the mechanical properties of polymer networks. Trapped entanglements -- topological crosslinks among polymer chains in a polymer network -- represent a consequential frontier in polymer science: they have been correlated with dramatic enhancement of fracture resistance, critical for applications of soft materials, as well as their lifespan, and therefore with sustainability. Yet, detailed entanglement topology-property relationships and effective strategies to engineer and manipulate entanglements are lacking, which limits one’s ability to tailor the fracture resistance of polymer networks. This project addresses these unmet needs via a three-pronged approach: (1) development of a bottom-up strategy to construct trapped entanglements by using templates based on supramolecular metal-ligand complexes, (2) systematic investigation of entanglement-mechanical property relationships by varying the template topology, and (3) coupling the entanglement template strategy with stimulus-responsive dynamic covalent chemistry to switch the entanglement topology -- and therefore mechanical properties of materials -- on demand. Key mechanical properties investigated in this project include modulus, ultimate strength, toughness, and threshold fracture energy. The project employs a combination of experimental and theoretical tools to accomplish the stated goals: synthesis and characterization of novel gel materials with templated entanglements, mechanical testing of these gels, molecular dynamics simulations and theoretical derivations. Advances in the fundamental understanding of trapped entanglements derived from this work will translate to improved longevity of polymer network materials and thereby help to reduce their accumulation in landfills. .This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来自《2021年美国救援计划法案》(公法117-2)。非技术摘要:聚合物网络在我们的世界中无处不在,以粘合剂、橡胶和凝胶的形式表现出来并得到广泛应用。这种材料的抗断裂能力对其在许多应用中的性能和寿命至关重要。事实上,被废弃轮胎覆盖的田野的图像表明了机械损坏的聚合物网络的前景。聚合物网络韧性的提高取决于对聚合物链在分子水平上的连接方式和宏观水平上的断裂阻力之间的基本关系的深入理解。具体地说,据报道,缠结--即在网络中纠缠的聚合物链--可以保护材料免受断裂;然而,这种现象的分子基础尚不清楚。这个项目旨在开发精确的方法来安装、了解和操纵聚合物网络中的陷阱纠缠,以最终提高其抗断裂能力并推进聚合物科学的基础。此外,通过本科生的基于课程的研究经验、当地学校的演示和教师的远程研究经验的结合,该项目将教育公众有关聚合物科学的一般基础知识,特别是聚合物网络的重要性。这些努力将培养未来几代学生对材料科学研究的欣赏,并将帮助他们考虑在STEM就业。技术概述:该项目的中心目标是发展分子精确的控制和了解捕获的纠缠及其对聚合物网络机械性能的影响。陷阱缠结--聚合物网络中聚合物链之间的拓扑交联--代表着聚合物科学的一个重要前沿:它们与显著提高抗裂性有关,这对软材料的应用至关重要,以及它们的寿命,因此与可持续性有关。然而,缺乏详细的纠缠拓扑-性质关系和有效的策略来设计和操纵纠缠,这限制了人们定制聚合物网络的断裂阻力的能力。该项目通过三管齐下的方法解决了这些未得到满足的需求:(1)开发一种自下而上的策略,通过使用基于超分子金属-配体络合物的模板来构建捕获的纠缠,(2)通过改变模板拓扑来系统地研究纠缠-力学性质的关系,以及(3)将纠缠模板策略与刺激响应型动态共价化学相结合,根据需要切换纠缠拓扑,从而改变材料的力学性质。本项目研究的主要力学性能包括弹性模数、极限强度、韧性和门槛断裂能。该项目利用实验和理论工具的组合来实现所述的目标:合成和表征具有模板缠结的新型凝胶材料、对这些凝胶进行力学测试、分子动力学模拟和理论推导。这项工作对捕获纠缠的基本理解方面的进展将转化为提高聚合物网络材料的寿命,从而有助于减少它们在垃圾填埋场中的堆积。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aleksandr Zhukhovitskiy其他文献

Meet our emerging leaders in chemistry – part II
认识我们化学领域的新兴领军人物——第二部分
  • DOI:
    10.1016/j.trechm.2024.06.011
  • 发表时间:
    2024-08-01
  • 期刊:
  • 影响因子:
    13.600
  • 作者:
    Lisa Olshansky;Sachin Handa;Melissa Gish;Aleksandr Zhukhovitskiy;Juan Alegre-Requena;Gözde Demirer;Chun-Xiang Zhuo
  • 通讯作者:
    Chun-Xiang Zhuo

Aleksandr Zhukhovitskiy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aleksandr Zhukhovitskiy', 18)}}的其他基金

Carbodiimide Ring-opening Metathesis Polymerization: Precision Synthesis of Nitrogen-Rich Polymer Backbones
碳二亚胺开环复分解聚合:富氮聚合物主链的精密合成
  • 批准号:
    2203499
  • 财政年份:
    2022
  • 资助金额:
    $ 67.48万
  • 项目类别:
    Continuing Grant

相似国自然基金

“Bottom-up”策略构筑金属纳米粒子-多孔有机聚合物复合催化材料
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
简便快速bottom-up法制备含氮空位中心的纳米金刚石晶体
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
手性有机多孔材料:“Bottom-Up”策略实现手性有机小分子催化剂的多相化
  • 批准号:
    21172103
  • 批准年份:
    2011
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: A Bottom Up pAproach Toward Understanding the Sunlight Driven Mechanisms and Pathways for the Release of Metals from Petroleum.
职业:一种自下而上的方法来了解阳光驱动的机制和从石油中释放金属的途径。
  • 批准号:
    2340743
  • 财政年份:
    2024
  • 资助金额:
    $ 67.48万
  • 项目类别:
    Continuing Grant
CAREER: Bottom-Up Localized Online Learning with Spintronic Neuromorphic Networks
职业:利用自旋电子神经形态网络进行自下而上的本地化在线学习
  • 批准号:
    2146439
  • 财政年份:
    2022
  • 资助金额:
    $ 67.48万
  • 项目类别:
    Continuing Grant
CAREER: Bottom-Up Understanding of Liquid Breakup at Supercritical Conditions
职业:对超临界条件下液体分解的自下而上的理解
  • 批准号:
    2237124
  • 财政年份:
    2022
  • 资助金额:
    $ 67.48万
  • 项目类别:
    Continuing Grant
CAREER: Understanding Structure-Function Relationships of Polyoxovanadate-Alkoxide Clusters from a Bottom-Up Perspective
职业:从自下而上的角度理解多氧钒酸盐-醇盐簇的结构-功能关系
  • 批准号:
    2145657
  • 财政年份:
    2022
  • 资助金额:
    $ 67.48万
  • 项目类别:
    Continuing Grant
CAREER: Chromatin Folding from the Bottom-up
职业:染色质自下而上折叠
  • 批准号:
    2042362
  • 财政年份:
    2021
  • 资助金额:
    $ 67.48万
  • 项目类别:
    Continuing Grant
CAREER: Engineering Self-Assembly of Recombinant Fusion Proteins for Bottom-Up Construction of Protein-Powered Synthetic Protocells
职业:重组融合蛋白的工程自组装,用于自下而上构建蛋白质驱动的合成原始细胞
  • 批准号:
    2045313
  • 财政年份:
    2021
  • 资助金额:
    $ 67.48万
  • 项目类别:
    Continuing Grant
CAREER: Top-down and bottom-up controls on species coexistence in a variable world
职业:自上而下和自下而上控制可变世界中的物种共存
  • 批准号:
    2047239
  • 财政年份:
    2021
  • 资助金额:
    $ 67.48万
  • 项目类别:
    Continuing Grant
CAREER: Nanoflow RPLC-CZE-MS/MS: a novel approach for deep and highly sensitive bottom-up proteomics
职业:Nanoflow RPLC-CZE-MS/MS:一种深度、高灵敏度自下而上蛋白质组学的新方法
  • 批准号:
    1846913
  • 财政年份:
    2019
  • 资助金额:
    $ 67.48万
  • 项目类别:
    Standard Grant
CAREER: Hardware Accelerated Bayesian Inference via Approximate Message Passing: A Bottom-Up Approach
职业:通过近似消息传递进行硬件加速贝叶斯推理:自下而上的方法
  • 批准号:
    1652065
  • 财政年份:
    2017
  • 资助金额:
    $ 67.48万
  • 项目类别:
    Continuing Grant
CAREER: Understanding human embryonic development from the bottom up
职业:自下而上了解人类胚胎发育
  • 批准号:
    1553228
  • 财政年份:
    2016
  • 资助金额:
    $ 67.48万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了