CAREER: Catalytic Membranes for Integrated CO2 Capture and Conversion
职业:用于集成二氧化碳捕获和转化的催化膜
基本信息
- 批准号:2144362
- 负责人:
- 金额:$ 53.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-15 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Carbon dioxide (CO2) capture from air is considered an important negative emissions technology to mitigate global warming. Current sorbent-based CO2 capture processes are prohibitively expensive because the sorbent must be regenerated via an energy-intensive step to release the captured CO2. Once released from the sorbent, the captured CO2 must also be compressed and transported to sites for storage, which further reduces efficiency. An ideal CO2 capture technology would be both high-capacity and energy-efficient, while simultaneously converting the waste CO2 stream into a value-added product. This project will advance the fundamental science of integrating CO2 capture with CO2 conversion in a single unit process using a newly-envisioned bifunctional catalytic membrane. The membrane would act as both the CO2 separation and conversion medium, providing an energy- and atom-efficient alternative to sorbent-based CO2 capture, compression, transport, and storage. Such a membrane could revolutionize the way fuels and chemicals are produced, leading to transformative change in the chemical process industries and long-term stimulation of the United States economy. The students supported by this project will receive interdisciplinary training in catalysis, membrane separations, and advanced spectroscopic characterization. This CAREER project will also broaden the participation of underrepresented groups in STEM through outreach activities at Navarre Middle School in South Bend, Indiana, and research opportunities for undergraduate and graduate students from Puerto Rico.This CAREER project aims to advance the fundamental science underlying the integration of CO2 capture and conversion into a single unit, membrane-based process. The envisioned bifunctional CO2 capture and conversion membrane is polymer-based with: (1) amine groups attached to the polymer chain to selectively capture CO2 from air, or concentrated point sources, and facilitate CO2 transport across the membrane; and (2) catalytic groups (e.g. amines, halides, metals) to catalyze conversion of CO2 on the permeate side of the membrane. The research goal of this project is to identify the key factors (mass transport, reaction kinetics, and stability) that limit the overall rate of integrated CO2 capture and conversion. The project will examine cyclic carbonate synthesis as a model CO2 conversion reaction. Knowledge of the rate-limiting factors will be used to develop strategies for circumventing these performance-limiting processes. The project is innovative in its use of unique operando spectroscopy techniques developed by the investigator to probe the structure, performance, and dynamics of the catalytic membranes under realistic operating conditions. The research outcomes will provide foundational knowledge of the kinetics, mechanisms, and stability of the catalytic membrane, which will provide a framework for developing a practical membrane system for integrating CO2 capture with CO2 conversion to a wide range of fuels and chemicals. The research will also advance the state-of-the-art of operando membrane characterization, enhance membranes for CO2 separation, and enhance catalysts for CO2 conversion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从空气中捕获二氧化碳(CO2)被认为是缓解全球变暖的重要负排放技术。目前基于吸附剂的二氧化碳捕获过程非常昂贵,因为吸附剂必须通过能源密集型步骤进行再生以释放捕获的二氧化碳。一旦从吸附剂中释放出来,捕获的二氧化碳还必须被压缩并运输到储存地点,这进一步降低了效率。理想的二氧化碳捕获技术应具有高容量和高能效,同时将废二氧化碳流转化为增值产品。该项目将利用新设想的双功能催化膜,推进将二氧化碳捕获与二氧化碳转化集成在单个单元过程中的基础科学。该膜将充当二氧化碳分离和转化介质,为基于吸附剂的二氧化碳捕获、压缩、运输和储存提供一种能源和原子效率高的替代方案。这种膜可以彻底改变燃料和化学品的生产方式,从而导致化学加工行业发生变革,并长期刺激美国经济。该项目支持的学生将接受催化、膜分离和高级光谱表征方面的跨学科培训。该职业项目还将通过印第安纳州南本德纳瓦拉中学的外展活动,以及为波多黎各本科生和研究生提供研究机会,扩大代表性不足群体对 STEM 的参与。该职业项目旨在推进将二氧化碳捕获和转化整合为单一单元、基于膜的过程的基础科学。设想的双功能二氧化碳捕获和转化膜是基于聚合物的,具有:(1)连接到聚合物链上的胺基团,可以选择性地捕获空气中或浓缩点源中的二氧化碳,并促进二氧化碳跨膜传输; (2) 催化基团(例如胺、卤化物、金属)在膜渗透侧催化 CO2 转化。该项目的研究目标是确定限制二氧化碳捕获和转化综合速率的关键因素(传质、反应动力学和稳定性)。该项目将研究环状碳酸酯合成作为二氧化碳转化反应模型。对速率限制因素的了解将用于制定规避这些性能限制过程的策略。该项目的创新之处在于使用了研究人员开发的独特的操作光谱技术来探测现实操作条件下催化膜的结构、性能和动力学。研究成果将提供催化膜的动力学、机制和稳定性的基础知识,这将为开发实用的膜系统提供框架,以将二氧化碳捕获与二氧化碳转化为各种燃料和化学品相结合。该研究还将推进最先进的原位膜表征,增强二氧化碳分离膜,并增强二氧化碳转化催化剂。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The influence of amine structure on the mechanism of CO2 facilitated transport across amine-functionalized polymer membranes: An operando spectroscopy study
- DOI:10.1016/j.memsci.2023.122163
- 发表时间:2023-10
- 期刊:
- 影响因子:9.5
- 作者:Hui Xu;Sarah G. Pate;C. O'Brien
- 通讯作者:Hui Xu;Sarah G. Pate;C. O'Brien
Mathematical modeling of CO2 facilitated transport across polyvinylamine membranes with direct operando observation of amine carrier saturation
通过直接操作观察胺载体饱和度,二氧化碳的数学模型促进了跨聚乙烯胺膜的运输
- DOI:10.1016/j.cej.2023.141728
- 发表时间:2023
- 期刊:
- 影响因子:15.1
- 作者:Xu, Hui;Pate, Sarah G.;O'Brien, Casey P.
- 通讯作者:O'Brien, Casey P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Casey O'Brien其他文献
Understanding the causes of human-wombat conflict and exploring non-lethal damage mitigation strategies for the southern hairy-nosed wombat (Lasiorhinus latifrons)
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Casey O'Brien - 通讯作者:
Casey O'Brien
Combining human and artificial intelligence for enhanced AI literacy in higher education
- DOI:
10.1016/j.caeo.2024.100184 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:
- 作者:
Anastasia Olga (Olnancy) Tzirides;Gabriela Zapata;Nikoleta Polyxeni Kastania;Akash K. Saini;Vania Castro;Sakinah A. Ismael;Yu-ling You;Tamara Afonso dos Santos;Duane Searsmith;Casey O'Brien;Bill Cope;Mary Kalantzis - 通讯作者:
Mary Kalantzis
Electronic patient-reported outcomes improve postoperative gynecologic oncology care in a rural academic center
电子患者报告结果改善了农村学术中心的术后妇科肿瘤护理
- DOI:
10.1016/j.ygyno.2024.07.561 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:4.100
- 作者:
Linh Nguyen;Casey O'Brien;Franziska Mbonglou;Elizabeth Anderson;Michael Hassett;Sandra Wong;Ilana Cass - 通讯作者:
Ilana Cass
Casey O'Brien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Casey O'Brien', 18)}}的其他基金
Accessing and Stabilizing Metastable States by Coupling Plasma and Surface Chemistry
通过耦合等离子体和表面化学来访问和稳定亚稳态
- 批准号:
2247498 - 财政年份:2023
- 资助金额:
$ 53.73万 - 项目类别:
Standard Grant
National CyberWatch: Cybersecurity Education Solutions for the Nation
国家网络观察:国家网络安全教育解决方案
- 批准号:
1204533 - 财政年份:2012
- 资助金额:
$ 53.73万 - 项目类别:
Continuing Grant
相似海外基金
Turning forever into never: the role of next gen electro-catalytic membranes in the destruction of PFAS
化永远为永远:下一代电催化膜在破坏 PFAS 中的作用
- 批准号:
557587-2021 - 财政年份:2022
- 资助金额:
$ 53.73万 - 项目类别:
Postgraduate Scholarships - Doctoral
Turning forever into never: the role of next gen electro-catalytic membranes in the destruction of PFAS
化永远为永远:下一代电催化膜在破坏 PFAS 中的作用
- 批准号:
557587-2021 - 财政年份:2021
- 资助金额:
$ 53.73万 - 项目类别:
Postgraduate Scholarships - Doctoral
Electro-Functional Membranes: New Materials for Selective Separations and Catalytic Degradations of Aqueous Environmental Contaminants
电功能膜:用于水环境污染物选择性分离和催化降解的新材料
- 批准号:
RGPIN-2016-06342 - 财政年份:2021
- 资助金额:
$ 53.73万 - 项目类别:
Discovery Grants Program - Individual
Electro-Functional Membranes: New Materials for Selective Separations and Catalytic Degradations of Aqueous Environmental Contaminants
电功能膜:用于水环境污染物选择性分离和催化降解的新材料
- 批准号:
RGPIN-2016-06342 - 财政年份:2020
- 资助金额:
$ 53.73万 - 项目类别:
Discovery Grants Program - Individual
Development of catalytic membranes by controlled assembly of heteropolyacid molecules
通过杂多酸分子的受控组装开发催化膜
- 批准号:
20K05224 - 财政年份:2020
- 资助金额:
$ 53.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Electro-Functional Membranes: New Materials for Selective Separations and Catalytic Degradations of Aqueous Environmental Contaminants
电功能膜:用于水环境污染物选择性分离和催化降解的新材料
- 批准号:
RGPIN-2016-06342 - 财政年份:2019
- 资助金额:
$ 53.73万 - 项目类别:
Discovery Grants Program - Individual
Development of novel conductive electro-photo-catalytic multifuncional nano-composite membranes for water treatment
新型导电光催化多功能纳米复合水处理膜的开发
- 批准号:
504587-2017 - 财政年份:2019
- 资助金额:
$ 53.73万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
CAREER: Catalytic Hollow-Fiber Membranes as an Efficient and Scalable Process in Water Treatment
职业:催化中空纤维膜作为水处理中的一种高效且可扩展的工艺
- 批准号:
1847466 - 财政年份:2019
- 资助金额:
$ 53.73万 - 项目类别:
Continuing Grant
Melt-processing of Enzymes into Bio-catalytic Polymer Membranes for Carbon Dioxide Remediation
将酶熔融加工成用于二氧化碳修复的生物催化聚合物膜
- 批准号:
1901713 - 财政年份:2019
- 资助金额:
$ 53.73万 - 项目类别:
Standard Grant
Development of novel conductive electro-photo-catalytic multifuncional nano-composite membranes for water treatment
新型导电光催化多功能纳米复合水处理膜的开发
- 批准号:
504587-2017 - 财政年份:2018
- 资助金额:
$ 53.73万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




