CAREER: Towards rational design and control of oxygen migration in oxide thin films for nano-ionic technologies

职业:针对纳米离子技术的氧化物薄膜中氧迁移的合理设计和控制

基本信息

  • 批准号:
    2144383
  • 负责人:
  • 金额:
    $ 60.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).PART 1: NON-TECHNICAL SUMMARYInformation storage and data processing has traditionally relied on moving electrons back and forth between different materials. In contrast, several emerging technologies rely on moving oxygen ions in and out of thin materials to change their properties, like electrical resistance or magnetism, by changing the materials chemistry. The expected advantages of this latter approach include greater energy efficiency, longer information storage lifetimes, and the ability to support new computing approaches like quantum computing. However, accurately measuring oxygen diffusion in very thin films remains challenging and creates a bottleneck in our ability to understand how different materials hinder or facilitate oxygen ion movement at small length scales. This CAREER project, supported by the Ceramics program in the Division of Materials Research, addresses this bottleneck by developing a new measurement technique to accurately measure oxygen migration through stacks of different thin films and from that extract information about the barrier to oxygen migration created by each layer and the interfaces between them. This knowledge can then be used to design technologies based on ion motion with the same precision that enables silicon-based electronics today. In addition, the educational outreach component of this program creates low-cost activity kits and free training videos to help K-12 teachers introduce students to materials science concepts and teach them about several key electronic devices. These kits are supported by free online videos that reinforce the activity concepts and connect them to ongoing research. Such experiences help create a pipeline of enthusiastic young scientists with an early knowledge of materials science principles and how they can be used to create greener technologies. PART 2: TECHNICAL SUMMARY Controlling nanoscale oxygen migration in thin film heterostructures is important to harnessing the unique functional properties found in strongly correlated oxide materials for the next generation of information technologies. As a step towards improved ionic migration control in oxide films, this CAREER project, supported by the Ceramics program in the Division of Materials Research, creates new measurement capabilities and knowledge in the field of nanoscale ion diffusion. Specifically, this program develops a new in-situ scattering approach to quantify oxygen concentration profiles and extract quantitative diffusion coefficients and activation energies from different heterostructure geometries. Combining this approach with thin film engineering techniques enables the isolation of individual structure-property relationships between elements of the heterostructure design (e.g., strain, layer thickness, layer stacking) and their effect on oxygen migration in prototypical perovskite structures. By coupling these spatially resolved scattering studies with temperature-dependent impedance spectroscopy, this work provides insight into the active diffusion mechanism(s) operative in various heterostructure designs and temperature regimes. In conjunction with these research efforts is an educational plan that creates and distributes electronic materials activity kits designed to support state learning standards and are themselves supported by a database of lay-audience videos connecting core ideas from each activity to ongoing research. Graduate students engaged with the project gain experience in electronic materials synthesis, state-of-the-art characterization methodologies, and scientific communication to a variety of audiences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。 信息存储和数据处理传统上依赖于在不同材料之间来回移动电子。相比之下,一些新兴技术依靠将氧离子移入和移出薄材料来改变材料的性质,如电阻或磁性,通过改变材料的化学性质。后一种方法的预期优势包括更高的能源效率,更长的信息存储寿命,以及支持量子计算等新计算方法的能力。然而,精确测量非常薄的薄膜中的氧扩散仍然具有挑战性,并且在我们理解不同材料如何在小长度尺度上阻碍或促进氧离子运动的能力方面造成了瓶颈。该CAREER项目由材料研究部门的陶瓷项目支持,通过开发一种新的测量技术来解决这一瓶颈,该技术可以准确测量通过不同薄膜堆叠的氧迁移,并从中提取有关每层和它们之间的界面所产生的氧迁移障碍的信息。然后,这些知识可以用于设计基于离子运动的技术,其精度与今天的硅基电子产品相同。此外,该计划的教育推广部分创建了低成本的活动包和免费的培训视频,以帮助K-12教师向学生介绍材料科学概念,并教他们几个关键的电子设备。这些工具包由免费的在线视频支持,这些视频加强了活动概念,并将其与正在进行的研究联系起来。这些经验有助于建立一个充满热情的年轻科学家的管道,他们早期了解材料科学原理以及如何利用这些原理创造更环保的技术。第二部分: 控制薄膜异质结构中的纳米级氧迁移对于利用强相关氧化物材料中发现的独特功能性质用于下一代信息技术是重要的。作为改善氧化膜中离子迁移控制的一步,该CAREER项目由材料研究部的陶瓷项目支持,在纳米级离子扩散领域创造了新的测量能力和知识。具体而言,该计划开发了一种新的原位散射方法来量化氧浓度分布,并从不同的异质结构几何形状中提取定量扩散系数和活化能。将该方法与薄膜工程技术相结合使得能够隔离异质结构设计的元件之间的各个结构-性质关系(例如,应变、层厚度、层堆叠)以及它们对原型钙钛矿结构中氧迁移的影响。通过将这些空间分辨散射研究与随温度变化的阻抗谱相结合,这项工作提供了对在各种异质结构设计和温度制度中操作的主动扩散机制的深入了解。与这些研究工作相结合的是一项教育计划,该计划创建和分发电子材料活动包,旨在支持国家学习标准,并由一个将每个活动的核心思想与正在进行的研究联系起来的非专业观众视频数据库提供支持。参与该项目的研究生在电子材料合成、最先进的表征方法以及与各种受众的科学交流方面获得了经验。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan Need其他文献

Strain and Defect Evolution of Si<sub>1-x</sub>Ge<sub>x</sub>/Si Heterostructures Grown by Pulsed Laser Induced Epitaxy
  • DOI:
    10.1016/j.surfin.2022.102149
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jesse A. Johnson;Ryan Need;David Brown;Chris Hatem;Bruce Adams;Xuebin Li;Kevin S. Jones
  • 通讯作者:
    Kevin S. Jones
Design and realization of a sputter deposition system for the <em>in situ</em> and <em>in operando</em> use in polarized neutron reflectometry experiments: Novel capabilities
  • DOI:
    10.1016/j.nima.2020.163710
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jingfan Ye;Alexander Book;Sina Mayr;Henrik Gabold;Fankai Meng;Helena Schäfferer;Ryan Need;Dustin Gilbert;Thomas Saerbeck;Jochen Stahn;Peter Böni;Wolfgang Kreuzpaintner
  • 通讯作者:
    Wolfgang Kreuzpaintner

Ryan Need的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

On Demand Dissoluble Supramolecular Hydrogels: Towards Pain Free Burn Dressings
按需可溶性超分子水凝胶:迈向无痛烧伤敷料
  • 批准号:
    10658220
  • 财政年份:
    2023
  • 资助金额:
    $ 60.68万
  • 项目类别:
A Diagnostic Platform for Extracellular Vesicle-Derived Biomarkers - Towards Early Detection of Alzheimer's Disease
细胞外囊泡衍生生物标志物的诊断平台 - 迈向阿尔茨海默病的早期检测
  • 批准号:
    10629620
  • 财政年份:
    2023
  • 资助金额:
    $ 60.68万
  • 项目类别:
New eras of catalysis: Towards the development of pseudotransition metal organocatalysts for metal-free cross-coupling transformations
催化新时代:开发用于无金属交叉偶联转化的假过渡金属有机催化剂
  • 批准号:
    10751244
  • 财政年份:
    2023
  • 资助金额:
    $ 60.68万
  • 项目类别:
Mechanochemistry of gram-positive bacterial adhesins - towards the rational design of anti-invasive strategies
革兰氏阳性细菌粘附素的机械化学——合理设计抗侵入策略
  • 批准号:
    EP/Y001125/1
  • 财政年份:
    2023
  • 资助金额:
    $ 60.68万
  • 项目类别:
    Research Grant
RuCatDAH: Rational design of Ruthenium Catalysts towards efficient Decomposition of Ammonia for Hydrogen production
RuCatDAH:合理设计钌催化剂,实现氨高效分解制氢
  • 批准号:
    EP/Y024931/1
  • 财政年份:
    2023
  • 资助金额:
    $ 60.68万
  • 项目类别:
    Fellowship
Towards a Rational Design Procedure for Concrete Liquid Containing Structures
走向混凝土含液结构的合理设计程序
  • 批准号:
    RGPIN-2022-03823
  • 财政年份:
    2022
  • 资助金额:
    $ 60.68万
  • 项目类别:
    Discovery Grants Program - Individual
Towards a mechanistic understanding of the role of gut microbiota in postnatal growth impairment
从机制上理解肠道微生物群在产后生长障碍中的作用
  • 批准号:
    10655393
  • 财政年份:
    2022
  • 资助金额:
    $ 60.68万
  • 项目类别:
Towards a mechanistic understanding of the role of gut microbiota in postnatal growth impairment
从机制上理解肠道微生物群在产后生长障碍中的作用
  • 批准号:
    10765586
  • 财政年份:
    2022
  • 资助金额:
    $ 60.68万
  • 项目类别:
Towards a thermophilic strain of Escherichia coli: Combining powerful rational and random approaches for laboratory evolution
走向嗜热大肠杆菌菌株:结合强大的理性和随机方法进行实验室进化
  • 批准号:
    559688-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 60.68万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Towards the Rational Design of Ni & Co free Chalcogen Anion Redox Cathode Materials
走向Ni的合理设计
  • 批准号:
    2127519
  • 财政年份:
    2021
  • 资助金额:
    $ 60.68万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了