CAREER: Extending the Foundations of Privacy-Preserving Machine Learning

职业:扩展隐私保护机器学习的基础

基本信息

  • 批准号:
    2144532
  • 负责人:
  • 金额:
    $ 50.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

Despite their numerous societal benefits, modern machine learning algorithms pose real threats to personal privacy. Differential privacy is a mathematical framework that enables designing learning algorithms with provable privacy guarantees for their input datasets. Despite the recent progress in differentially private (DP) machine learning, our current understanding of the fundamental characteristics of DP learning algorithms is very limited. This career project offers a multifaceted research plan that tackles a broad range of fundamental questions in two important areas of DP machine learning: (i) stochastic optimization and (ii) federated learning. The first is one of the most fundamental tasks in machine learning and the second is one of the most promising applications of modern machine learning. This project aims at: 1) understanding the computational and statistical limits of DP stochastic optimization algorithms, 2) building a comprehensive theory for DP stochastic non-convex optimization, which provides a firm basis for developing new DP algorithms for modern machine learning, and 3) developing new, efficient algorithmic paradigms for DP federated learning that offer meaningful and provable utility guarantees, while taking into account the evolving nature of users’ data and their incentives to participate in collaborative learning. The outcomes of this research are expected to yield the next-generation privacy-preserving learning algorithms that can be implemented for widespread practical use. This career project includes educational and outreach activities such as developing new graduate courses on optimization and differential privacy, and organizing workshops to understand the threats to data privacy in modern machine learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管现代机器学习算法具有众多的社会效益,但它们对个人隐私构成了真实的威胁。差分隐私是一个数学框架,可以设计具有可证明隐私保证的学习算法。尽管最近在差分私有(DP)机器学习方面取得了进展,但我们目前对DP学习算法的基本特征的理解非常有限。这个职业项目提供了一个多方面的研究计划,解决DP机器学习两个重要领域的广泛基本问题:(i)随机优化和(ii)联邦学习。第一个是机器学习中最基本的任务之一,第二个是现代机器学习最有前途的应用之一。该项目旨在:1)理解DP随机优化算法的计算和统计限制,2)建立DP随机非凸优化的综合理论,为现代机器学习开发新的DP算法提供坚实的基础,以及3)为DP联邦学习开发新的,有效的算法范例,提供有意义的和可证明的效用保证,同时考虑到用户数据的不断变化的性质及其参与协作学习的动机。这项研究的成果预计将产生下一代隐私保护学习算法,可以实现广泛的实际应用。该职业项目包括教育和推广活动,例如开发关于优化和差异隐私的新研究生课程,以及组织研讨会以了解现代机器学习对数据隐私的威胁。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Raef Bassily其他文献

Causal Erasure Channels
因果删除通道
  • DOI:
    10.1137/1.9781611973402.133
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Raef Bassily;Adam D. Smith
  • 通讯作者:
    Adam D. Smith
Linear Queries Estimation with Local Differential Privacy
  • DOI:
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Raef Bassily
  • 通讯作者:
    Raef Bassily
User-level Private Stochastic Convex Optimization with Optimal Rates
具有最佳速率的用户级私人随机凸优化
Model-Agnostic Private Learning via Stability
通过稳定性实现与模型无关的私人学习
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Raef Bassily;Om Thakkar;Abhradeep Thakurta
  • 通讯作者:
    Abhradeep Thakurta
Coupled-Worlds Privacy: Exploiting Adversarial Uncertainty in Statistical Data Privacy
耦合世界隐私:利用统计数据隐私中的对抗性不确定性

Raef Bassily的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Raef Bassily', 18)}}的其他基金

AF: Small: Collaborative Research: Rigorous Approaches for Scalable Privacy-preserving Deep Learning
AF:小型:协作研究:可扩展的隐私保护深度学习的严格方法
  • 批准号:
    1908281
  • 财政年份:
    2019
  • 资助金额:
    $ 50.01万
  • 项目类别:
    Standard Grant

相似海外基金

XRtists: Artists Extending Realities
XRtists:延伸现实的艺术家
  • 批准号:
    AH/Z505407/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.01万
  • 项目类别:
    Research Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341858
  • 财政年份:
    2024
  • 资助金额:
    $ 50.01万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341859
  • 财政年份:
    2024
  • 资助金额:
    $ 50.01万
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Scaling and Extending Exploratory Reading Groups to Strengthen Computing Pathways
HSI 实施和评估项目:扩大和扩展探索性阅读小组以加强计算途径
  • 批准号:
    2414332
  • 财政年份:
    2024
  • 资助金额:
    $ 50.01万
  • 项目类别:
    Continuing Grant
Extending the Florida Pathways 2 Success Partnership to Increase Engagement, Retention, and Success of Low-income Undergraduate and Graduate Students
扩展佛罗里达途径 2 成功合作伙伴关系,以提高低收入本科生和研究生的参与度、保留率和成功率
  • 批准号:
    2322545
  • 财政年份:
    2024
  • 资助金额:
    $ 50.01万
  • 项目类别:
    Continuing Grant
Extending the utility and durability of antifungal agents via innovative treatment regimens that minimise drug resistance
通过创新治疗方案最大限度地减少耐药性,延长抗真菌药物的效用和持久性
  • 批准号:
    MR/Y002164/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50.01万
  • 项目类别:
    Research Grant
Extending Remaining Useful Life of Second-life Battery Energy Systems
延长二次电池能源系统的剩余使用寿命
  • 批准号:
    DP240102646
  • 财政年份:
    2024
  • 资助金额:
    $ 50.01万
  • 项目类别:
    Discovery Projects
OneSpray - Extending the shelf life of fresh produce through novel antimicrobial coating technology
OneSpray - 通过新型抗菌涂层技术延长新鲜农产品的保质期
  • 批准号:
    10075060
  • 财政年份:
    2023
  • 资助金额:
    $ 50.01万
  • 项目类别:
    Collaborative R&D
Extending Mironid's PDE4 activator programme: Hyperparathyroidism as a second clinical indication
扩展 Mironid 的 PDE4 激活剂计划:甲状旁腺功能亢进作为第二个临床适应症
  • 批准号:
    10038156
  • 财政年份:
    2023
  • 资助金额:
    $ 50.01万
  • 项目类别:
    Collaborative R&D
Extending Lifetime of Existing RC Structures Using Cementless FRG: Clarification of Mechanical Performance of FRG-RC Composite Members
使用无水泥 FRG 延长现有 RC 结构的使用寿命:澄清 FRG-RC 复合构件的机械性能
  • 批准号:
    23H00200
  • 财政年份:
    2023
  • 资助金额:
    $ 50.01万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了