CAREER: Qurious: Methods for Making Erroneous Near-term Quantum Computers More Usable

职业:好奇:使错误的近期量子计算机更可用的方法

基本信息

  • 批准号:
    2144540
  • 负责人:
  • 金额:
    $ 55.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Quantum computing offers exceptional promise for transformative discoveries in many scientific and business domains, including drug discovery, cybersecurity, manufacturing, financial services — realizing this potential requires urgent research efforts toward making quantum computing technology more usable and mature quickly, and developing a capable STEM workforce with strong technical skills in quantum computing. Unfortunately, existing quantum computing machines, widely known as Noisy Intermediate Scale Quantum (NISQ) machines, are highly error-prone and expected to remain to be reliability-constrained in the future. When computational scientists execute their applications on NISQ machines, they receive erroneous and noisy program outputs. The promise of exponential speedups by quantum computers is not meaningful if the end-users cannot infer the correct program output after executing their programs on these machines. Therefore, this project, Qurious (pronounced as "curious"), aims to design and develop a robust system software ecosystem for quantum computers to help quantum programmers make meaningful interpretations of noisy and erroneous runs on quantum computers. The methods, developed in this project, will mitigate the side-effects of errors on quantum computers, and hence, enable high-performance computing (HPC) programmers to leverage quantum computers for solving computationally challenging problems of societal importance. This project will help HPC programmers scale their programs on larger quantum machines, and exploit the heterogeneity among quantum machines in terms of resilience characteristics on quantum cloud computing platforms, to make program outputs less noisy and more reliable. This project aims to prepare a diverse and competitive STEM workforce with quantum computing skills to achieve economic competitiveness in the quantum-enabled future and leverage the transformative changes quantum computing will bring to society. This project devises a novel three-pronged education and outreach plan. The first step aims to raise curiosity and elevate excitement about quantum computing at an early stage (e.g., high school students). Then, at the next stage (i.e., undergraduate level), this excitement is converted into the development of quantum-style thinking. At the next educational stage (i.e., graduate students), the students are provided technical expertise for efficiently managing quantum computing resources under reliability constraints — leveraging the research advances and outcomes achieved in this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子计算为许多科学和商业领域的变革性发现提供了非凡的前景,包括药物发现,网络安全,制造业,金融服务-实现这一潜力需要紧急研究工作,使量子计算技术更可用和更快成熟,并培养一支在量子计算方面具有强大技术技能的有能力的STEM劳动力。不幸的是,现有的量子计算机器,广泛称为噪声中间尺度量子(NISQ)机器,非常容易出错,预计在未来仍将受到可靠性的限制。当计算科学家在NISQ机器上执行他们的应用程序时,他们会收到错误和嘈杂的程序输出。如果最终用户在这些机器上执行程序后无法推断出正确的程序输出,那么量子计算机的指数加速承诺就没有意义了。因此,这个名为Qurious的项目旨在为量子计算机设计和开发一个强大的系统软件生态系统,以帮助量子程序员对量子计算机上的噪声和错误运行做出有意义的解释。该项目开发的方法将减轻量子计算机上错误的副作用,从而使高性能计算(HPC)程序员能够利用量子计算机解决具有社会重要性的计算挑战性问题。该项目将帮助HPC程序员在更大的量子机器上扩展他们的程序,并在量子云计算平台上利用量子机器之间的弹性特性的异质性,使程序输出更少噪音,更可靠。该项目旨在培养具有量子计算技能的多元化和竞争力的STEM劳动力,以实现量子未来的经济竞争力,并利用量子计算将给社会带来的变革。该项目设计了一个新颖的三管齐下的教育和推广计划。第一步的目标是在早期阶段提高对量子计算的好奇心和兴奋感(例如,高中生)。然后,在下一阶段(即,本科阶段),这种兴奋转化为量子式思维的发展。在下一个教育阶段(即,研究生),为学生提供在可靠性约束下有效管理量子计算资源的技术专业知识-利用该项目中取得的研究进展和成果。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Devesh Tiwari其他文献

Characterizing and Exploiting Soft Error Vulnerability Phase Behavior in GPU Applications
表征和利用 GPU 应用程序中的软错误漏洞阶段行为
Robust and Resource-Efficient Quantum Circuit Approximation
稳健且资源高效的量子电路逼近
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tirthak Patel;Ed Younis;Costin Iancu;W. A. Jong;Devesh Tiwari
  • 通讯作者:
    Devesh Tiwari
Graphine: Enhanced Neutral Atom Quantum Computing Using Application-Specific Rydberg Atom Arrangement
Graphine:使用特定于应用的里德堡原子排列增强中性原子量子计算
Reducing Waste in Large Scale Systems through Introspective Analysis
通过内省分析减少大型系统中的浪费
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Leonardo Bautista;Ana Gainaru;Swann Perarnau;Devesh Tiwari;Saurabh Gupta;C. Engelmann;F. Cappello;M. Snir
  • 通讯作者:
    M. Snir
Modeling and Analyzing Key Performance Factors of Shared Memory MapReduce
共享内存 MapReduce 的关键性能因素建模与分析

Devesh Tiwari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Devesh Tiwari', 18)}}的其他基金

Collaborative Research: CNS Core: Small: HARMONIA: New Methods for Colocating Multiple QoS-Sensitive Jobs
协作研究:CNS 核心:小型:HARMONIA:共置多个 QoS 敏感作业的新方法
  • 批准号:
    2124897
  • 财政年份:
    2021
  • 资助金额:
    $ 55.62万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for 2020 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)
NSF 学生旅费资助 2020 年 IEEE 国际系统和软件性能分析研讨会 (ISPASS)
  • 批准号:
    2023217
  • 财政年份:
    2020
  • 资助金额:
    $ 55.62万
  • 项目类别:
    Standard Grant
CNS Core: Small: REYAZ: Reliability-Aware Job Scheduling for HPC Systems
CNS 核心:小型:REYAZ:HPC 系统的可靠性感知作业调度
  • 批准号:
    1910601
  • 财政年份:
    2019
  • 资助金额:
    $ 55.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了