CAREER: Modeling and Quantification of the Interdependent Power Grid Uncertainties
职业:相互依赖的电网不确定性的建模和量化
基本信息
- 批准号:2144918
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF CAREER project aims to address the challenges introduced by the increasing power grid uncertainties. The expected increase in intermittent sustainable energy resources will introduce inevitable uncertainties to the power grids. At the same time, the severe weather patterns in recent years have significantly increased the grid outages and component failures. There is a critical need for new techniques that model and quantify these highly interdependent uncertainties. Such techniques will better prepare future grids for the impending surge in uncertainties and facilitate grid reliability. This project will bring transformative changes to real-time tools that model and quantify the impacts of interdependent grid uncertainties, namely, renewable generation and outages. The intellectual merits of the project include the introduction of new knowledge on modeling and quantification of power grid uncertainties and their causal impacts on grid operations. The broader impacts of the project include more efficient and reliable grid operations under uncertainties, tackling barriers for the integration of sustainable energy resources, and addressing the challenges of climate change. The integrated research and education objectives of the project will train students from diverse groups, including undergraduate and high school students. The education and outreach activities promote the participation and retention of the underrepresented groups in engineering through collaborations with industry experts, public libraries, and local schools.The project will develop efficient and adaptive techniques to model and quantify interdependent grid uncertainties while considering their fast-evolving nature. The existing efforts on grid uncertainty quantification have been limited due to the complexity of analyzing the nonlinear dynamics of power systems and large-scale historical data, particularly in near real-time. This project will fuse tools from cascading failure modeling, machine learning, and statistics to develop a scalable and efficient quantification framework to understand the interdependencies among generation and outage uncertainties and allow for near real-time analysis. For a more realistic quantification of the grid uncertainties, the data-driven models and physical power flow equations will inform each other to yield hybrid stochastic models. Building upon these models, new causal models will be developed to demonstrate how individual uncertainties impact grid operations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个NSF职业生涯项目旨在解决日益增加的电网不确定性带来的挑战。间歇性可持续能源的预期增加将给电网带来不可避免的不确定性。与此同时,近年来的恶劣天气模式大大增加了电网中断和组件故障。迫切需要新的技术来模拟和量化这些高度相互依赖的不确定性。这些技术将更好地为未来的电网做好准备,以应对即将到来的不确定性激增,并提高电网的可靠性。该项目将为实时工具带来革命性的变化,这些工具可以对相互依赖的电网不确定性(即可再生能源发电和停电)的影响进行建模和量化。该项目的智力优势包括引入新的知识建模和量化电网的不确定性及其对电网运行的因果影响。该项目的更广泛影响包括在不确定性下更有效和可靠的电网运营,解决可持续能源整合的障碍,以及应对气候变化的挑战。该项目的综合研究和教育目标将培训来自不同群体的学生,包括本科生和高中生。通过与行业专家、公共图书馆和当地学校的合作,教育和推广活动促进了代表性不足的群体在工程领域的参与和保留。该项目将开发高效和适应性强的技术,以建模和量化相互依赖的电网不确定性,同时考虑其快速发展的性质。由于分析电力系统非线性动态和大规模历史数据的复杂性,特别是在近实时情况下,电网不确定性量化的现有努力受到限制。该项目将融合级联故障建模,机器学习和统计学的工具,以开发一个可扩展且有效的量化框架,以了解发电和停电不确定性之间的相互依赖关系,并允许近实时分析。为了更现实地量化电网不确定性,数据驱动模型和物理潮流方程将相互通知以产生混合随机模型。在这些模型的基础上,将开发新的因果模型,以证明个别不确定性如何影响电网操作。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic Feature Selection for Solar Irradiance Forecasting Based on Deep Reinforcement Learning
- DOI:10.1109/tia.2022.3206731
- 发表时间:2023-01-01
- 期刊:
- 影响因子:4.4
- 作者:Lyu, Cheng;Eftekharnejad, Sara;Xu, Chongfang
- 通讯作者:Xu, Chongfang
A Spectral Measure for Network Robustness: Assessment, Design, and Evolution
- DOI:10.1109/ickg55886.2022.00020
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Shengmin Jin;Rui Ma;Jiayu Li;Sara Eftekharnejad;R. Zafarani
- 通讯作者:Shengmin Jin;Rui Ma;Jiayu Li;Sara Eftekharnejad;R. Zafarani
A Comparative Study of Data-Driven Power Grid Cascading Failure Prediction Methods
- DOI:10.1109/naps58826.2023.10318537
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Nathalie Uwamahoro;Sara Eftekharnejad
- 通讯作者:Nathalie Uwamahoro;Sara Eftekharnejad
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sara Eftekharnejad其他文献
Locally efficient semiparametric estimator for zero-inflated Poisson model with error-prone covariates
具有易错协变量的零膨胀泊松模型的局部有效半参数估计器
- DOI:
10.1080/00949655.2020.1840569 - 发表时间:
2020 - 期刊:
- 影响因子:1.2
- 作者:
Jianxuan Liu;Sara Eftekharnejad - 通讯作者:
Sara Eftekharnejad
A PMU-based Multivariate Model for Classifying Power System Events
基于 PMU 的电力系统事件分类多元模型
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Rui Ma;S. Basumallik;Sara Eftekharnejad - 通讯作者:
Sara Eftekharnejad
Cyber security considerations on PMU-based state estimation
基于 PMU 的状态估计的网络安全考虑
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
S. Basumallik;Sara Eftekharnejad;Nathan Davis;Nagarjuna Nuthalapati;B. Johnson - 通讯作者:
B. Johnson
Recovery-based Model Predictive Control for Cascade Mitigation under Cyber-Physical Attacks
基于恢复的模型预测控制,用于网络物理攻击下的级联缓解
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Rui Ma;S. Basumallik;Sara Eftekharnejad;Fanxin Kong - 通讯作者:
Fanxin Kong
Selection of multiple credible contingencies for real time contingency analysis
选择多个可信的意外事件进行实时意外事件分析
- DOI:
10.1109/pesgm.2015.7286593 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Sara Eftekharnejad - 通讯作者:
Sara Eftekharnejad
Sara Eftekharnejad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sara Eftekharnejad', 18)}}的其他基金
TWC: Small: Securing Smart Power Grids under Data Measurement Cyber Threats
TWC:小型:在数据测量网络威胁下保护智能电网
- 批准号:
1600058 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
TWC: Small: Securing Smart Power Grids under Data Measurement Cyber Threats
TWC:小型:在数据测量网络威胁下保护智能电网
- 批准号:
1526166 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
ATD: Dynamic Modeling for Extreme Event Prediction with Uncertainty Quantification with Multi-panel Time Series
ATD:通过多面板时间序列不确定性量化进行极端事件预测的动态建模
- 批准号:
2319260 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Global quantification of bio-albedo effect by fusion use of satellite observation and numerical modeling
通过卫星观测和数值模拟的融合对生物反照率效应进行全局量化
- 批准号:
23K17036 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: Support for Early Career Participants in Conference on Uncertainty Quantification for Machine Learning Integrated Physics Modeling (UQ-MLIP)
会议:为机器学习集成物理建模不确定性量化会议 (UQ-MLIP) 的早期职业参与者提供支持
- 批准号:
2227959 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Adaptive Data Processing, Modeling, and Quantification Methods for Analyzing Cardiac Fibrillation
用于分析心颤的自适应数据处理、建模和量化方法
- 批准号:
RGPIN-2020-04933 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Modeling of nitrous oxide emission based on quantification of its production and consumption rate based on soil incubation under low soil oxygen concentration conditions
基于低土壤氧浓度条件下土壤培育的一氧化二氮排放量建模,量化其产生和消耗率
- 批准号:
21K05883 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Adaptive Data Processing, Modeling, and Quantification Methods for Analyzing Cardiac Fibrillation
用于分析心颤的自适应数据处理、建模和量化方法
- 批准号:
RGPIN-2020-04933 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
SWQU: NextGen Space Weather Modeling Framework Using Data, Physics and Uncertainty Quantification
SWQU:使用数据、物理和不确定性量化的下一代空间天气建模框架
- 批准号:
2027555 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Adaptive Data Processing, Modeling, and Quantification Methods for Analyzing Cardiac Fibrillation
用于分析心颤的自适应数据处理、建模和量化方法
- 批准号:
RGPIN-2020-04933 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Understanding Capacity Fade in Organic Flow Batteries by Combining Experiments with Modeling and Uncertainty Quantification
通过将实验与建模和不确定性量化相结合来了解有机液流电池的容量衰减
- 批准号:
2033969 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Empirical quantification and computational modeling of spine stability and neuromuscular function during dynamic movements.
动态运动过程中脊柱稳定性和神经肌肉功能的经验量化和计算建模。
- 批准号:
RGPIN-2014-05560 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual