CAREER: Time-Synchronized Estimation in Power Systems: Unique Challenges and Innovative Solutions
职业:电力系统中的时间同步估计:独特的挑战和创新的解决方案
基本信息
- 批准号:2145063
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Over the next two decades, the need for high-speed, high-precision monitoring, protection, and control of the electric power infrastructure will increase considerably as more renewable energy resources are added, electric vehicles become abundant, and frequency and intensity of extreme weather events rise. Time-synchronized measurements can satisfy this need and ensure resilience of this critical infrastructure only if the fundamental concerns regarding limited sensor coverage, lack of data and model interpretability, and heavy online computational burden are successfully addressed. This NSF CAREER project aims to alleviate these concerns by combining recent advances in robust statistics and machine learning to enable accurate and fast time-synchronized estimation in power systems. The project will bring transformative change by bridging the gap between physics-based and data-driven modeling and ensuring creation of algorithms that adapt to the needs of the data and not vice-versa. The intellectual merits of the project lie in creating new mathematical techniques in convex programming, interval-theoretic learning, and distributed optimization. The broader impacts of the project include engaging high school students in intellectually stimulating yet fun problem-solving projects that will expose them to STEM concepts as well as creating a power system workforce that is knowledgeable about data-driven methods in science and engineering.The goal of this project is to explore a new class of optimization problems that are fundamental to time-synchronized parameter, tracking, and dynamic estimation, respectively, in power systems. The proposed research will make new discoveries in two areas: (1) Linear estimation: by creating robust techniques that account for unknown noise characteristics and/or bounded perturbations in both dependent and independent variables. (2) Severely ill-structured estimation: by producing fast, valid, physics-compliant solutions using Bayesian inference and machine learning for problems in which classical methods fail to provide a consistent answer. The methodological and theoretical outcomes of this project achieved through the cross-pollination of ideas from power systems, data science, information theory, and statistics, will significantly boost the use of time-synchronized measurements for operational decision-making.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
未来20年,随着可再生能源的增加、电动汽车的丰富以及极端天气事件的频率和强度的增加,对电力基础设施进行高速、高精度监测、保护和控制的需求将大幅增加。只有在成功解决传感器覆盖范围有限、缺乏数据和模型可解释性以及沉重的在线计算负担等基本问题的情况下,时间同步测量才能满足这一需求,并确保这一关键基础设施的弹性。这个NSF职业项目旨在通过结合稳健统计和机器学习方面的最新进展来缓解这些担忧,以实现电力系统中准确和快速的时间同步估计。该项目将带来变革性的变化,弥合基于物理的建模和以数据为驱动的建模之间的差距,并确保创建适应数据需要的算法,而不是相反。该项目的智力优势在于在凸规划、区间理论学习和分布式优化方面创造了新的数学技术。该项目的更广泛影响包括让高中生参与智力刺激但有趣的问题解决项目,使他们接触STEM概念,以及培养一支了解科学和工程中数据驱动方法的电力系统员工队伍。该项目的目标是探索一类新的优化问题,这些问题分别是电力系统中时间同步参数、跟踪和动态估计的基础。拟议的研究将在两个领域取得新的发现:(1)线性估计:通过创建稳健的技术来解释因变量和自变量中的未知噪声特征和/或有界扰动。(2)严重的结构不良估计:通过使用贝叶斯推理和机器学习为经典方法无法提供一致答案的问题产生快速、有效、符合物理规范的解决方案。该项目通过交叉授粉电力系统、数据科学、信息论和统计学的思想而取得的方法论和理论成果,将极大地促进时间同步测量在运营决策中的使用。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cross-Correlated Scenario Generation for Renewable-Rich Power Systems Using Implicit Generative Models
- DOI:10.3390/en16041636
- 发表时间:2023-02
- 期刊:
- 影响因子:3.2
- 作者:Dhaval Dalal;Muhammad Bilal;Hritik Shah;Anwarul Islam Sifat;A. Pal;Philip Augustin
- 通讯作者:Dhaval Dalal;Muhammad Bilal;Hritik Shah;Anwarul Islam Sifat;A. Pal;Philip Augustin
Transmission Line Parameter Estimation Under Non-Gaussian Measurement Noise
- DOI:10.1109/tpwrs.2022.3204232
- 发表时间:2022-08
- 期刊:
- 影响因子:6.6
- 作者:A. Varghese;A. Pal;Gautam Dasarathy
- 通讯作者:A. Varghese;A. Pal;Gautam Dasarathy
State and Topology Estimation for Unobservable Distribution Systems using Deep Neural Networks.
使用深度神经网络对不可观测的配电系统进行状态和拓扑估计。
- DOI:10.1109/tim.2022.3167722
- 发表时间:2022
- 期刊:
- 影响因子:5.6
- 作者:Azimian,Behrouz;Biswas,ReetamSen;Moshtagh,Shiva;Pal,Anamitra;Tong,Lang;Dasarathy,Gautam
- 通讯作者:Dasarathy,Gautam
Time-Synchronized State Estimation Using Graph Neural Networks in Presence of Topology Changes
在存在拓扑变化的情况下使用图神经网络进行时间同步状态估计
- DOI:10.1109/naps58826.2023.10318579
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Moshtagh, Shiva;Sifat, Anwarul Islam;Azimian, Behrouz;Pal, Anamitra
- 通讯作者:Pal, Anamitra
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anamitra Pal其他文献
Improving Photovoltaic Hosting Capacity of Distribution Networks with Coordinated Inverter Control - A Case Study of the EPRI J1 Feeder
通过逆变器协调控制提高配电网光伏托管能力——以电科院J1馈线为例
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Dhaval Dalal;Madhura Sondharangalla;Raja Ayyanar;Anamitra Pal - 通讯作者:
Anamitra Pal
Cut-set and Stability Constrained Optimal Power Flow for Resilient Operation During Wildfires
野火期间弹性运行的割集和稳定性约束最佳功率流
- DOI:
10.48550/arxiv.2311.05734 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Satyaprajna Sahoo;Anamitra Pal - 通讯作者:
Anamitra Pal
High-Speed Voltage Control in Active Distribution Systems with Smart Inverter Coordination and Deep Reinforcement Learning
具有智能逆变器协调和深度强化学习的主动配电系统中的高速电压控制
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Mohammad Golgol;Anamitra Pal - 通讯作者:
Anamitra Pal
PMU-Timescale Topology Identification of Sub-station Node-Breaker Models using Deep Learning
使用深度学习对变电站节点断路器模型进行 PMU 时标拓扑识别
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Behrouz Azimian;Anamitra Pal;Backer Abu;Lang Chen;Penn Markham - 通讯作者:
Penn Markham
Anamitra Pal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anamitra Pal', 18)}}的其他基金
ASCENT: Sensor-enabled Wildfire Awareness and Risk Management (WARM) for Electric Power Infrastructure
ASCENT:电力基础设施中基于传感器的野火意识和风险管理 (WARM)
- 批准号:
2132904 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
- 批准号:82360504
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
- 批准号:82305023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
- 批准号:62171167
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
- 批准号:31971706
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
Time-of-Flight深度相机多径干扰问题的研究
- 批准号:61901435
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
建筑工程计划中Time Buffer 的形成和分配 – 工程项目管理中的社会性研究
- 批准号:71671098
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
光学Parity-Time对称系统中破坏点的全光调控特性研究
- 批准号:11504059
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2405142 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151021 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151022 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Exploration of hidden ferroelectricity by real-time observation of the electronic states synchronized with the electric field
通过实时观察与电场同步的电子态探索隐藏的铁电性
- 批准号:
22H01157 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: EAGER: Real-time Strategies and Synchronized Time Distribution Mechanisms for Enhanced Exascale Performance-Portability and Predictability
合作研究:EAGER:实时策略和同步时间分配机制,以增强百亿亿次性能-可移植性和可预测性
- 批准号:
2151020 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Fine-time synchronized observations of the initial stage of cumulonimbus clouds by phased array weather radar and Himawari8 AHI
相控阵天气雷达与Himawari8 AHI对积雨云初期的精细同步观测
- 批准号:
20K04080 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of time-synchronized system for recording of brain activity in virtual reality environment
虚拟现实环境下大脑活动时间同步记录系统研究
- 批准号:
19K20392 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of wireless time-synchronized EEG device and research on empathy by simultaneous EEG measurement by multiple people
无线时间同步脑电设备研制及多人同步脑电测量共情研究
- 批准号:
18H03282 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of puncture navigation synchronized with 2D real time ultrasound to 3D anatomical information
开发与 2D 实时超声同步的穿刺导航以获取 3D 解剖信息
- 批准号:
16K11025 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of time jitter monitor between electron accelerator and synchronized laser by using frequency decoded EO sampling method.
采用频率解码电光采样方法开发电子加速器和同步激光器之间的时间抖动监测器。
- 批准号:
24651097 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research