CAREER: Foundations of Small Data
职业:小数据的基础
基本信息
- 批准号:2145164
- 负责人:
- 金额:$ 54.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Deep Learning is a technique where one builds an artificial neural network that mimics the working of neurons in the biological brain. This technique drives a wide range of tasks today, e.g., predicting the next word while typing on the phone, tagging photos with the names of people in it, transcribing speech, etc. Building the artificial network requires collecting a large amount of data from each of these tasks. But as we seek to apply deep learning to more and more diverse tasks, it is becoming difficult to collect such large amounts of data from every task. For example, a number of languages or dialects have much fewer speakers than English or Spanish, and so their data is more scarce. This data scarcity is even more acute in domains such as the clinical sciences. The goal of this project is to develop theoretical and computational tools that enable artificial neural networks to work well even with few data. Educational and outreach goals of this project include (a) development of new curricula for graduate and undergraduate students, (b) mentoring trainees who work across established disciplines such as computer science, physics and engineering, and (c) fostering an ecosystem for machine learning across high-schools, higher-educational institutions and industry in the Greater Philadelphia region.In order to achieve these goals, this project will develop a foundational understanding of learning tasks. It will study how typical learning tasks have a certain effective low-dimensional structure that enables deep networks to learn such tasks efficiently. It seeks to characterize the geometry of the function space of predictive models fitted on typical tasks to understand when learning one task helps, or does not help, reduce the amount of data required to learn another task. It aims to exploit this geometry to build Bayesian priors that automatically adapt to the amount of available data. It is expected that such methods will reduce the amount of labeled data required for training by up to 1000 times. This theory will be used to develop new methods for transfer, multi-task and continual learning, and tools that enable accurate diagnosis of Alzheimer’s Disease.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的全部或部分资金来自2021年美国救援计划法案(公法117-2)。深度学习是一种技术,通过这种技术,人们可以建立一个人工神经网络,模仿生物大脑中神经元的工作。这项技术推动了当今广泛的任务,例如,在手机上打字时预测下一个单词,在照片上标记人名,转录语音等等。建立人工网络需要从每一项任务中收集大量数据。但随着我们寻求将深度学习应用于越来越多样化的任务,从每项任务中收集如此大量的数据变得越来越困难。例如,许多语言或方言的使用者比英语或西班牙语少得多,因此他们的数据更稀缺。这种数据稀缺在临床科学等领域更加严重。该项目的目标是开发理论和计算工具,使人工神经网络即使在数据很少的情况下也能很好地工作。该项目的教育和推广目标包括(A)为研究生和本科生开发新的课程,(B)指导跨计算机科学、物理和工程等现有学科工作的受训人员,以及(C)在大费城地区的高中、高等教育机构和行业中培养机器学习的生态系统。为了实现这些目标,该项目将发展对学习任务的基础理解。它将研究典型的学习任务如何具有某种有效的低维结构,使深度网络能够有效地学习这些任务。它试图表征适用于典型任务的预测模型的函数空间的几何形状,以理解何时学习一个任务有助于或无助于减少学习另一个任务所需的数据量。它的目标是利用这种几何学来建立自动适应可用数据量的贝叶斯先验。预计这种方法将把训练所需的标记数据量减少多达1000倍。这一理论将被用来开发转移、多任务和持续学习的新方法,以及能够准确诊断阿尔茨海默病的工具。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pratik Chaudhari其他文献
Design and Evaluation of Motion Planners for Quadrotors
四旋翼飞行器运动规划器的设计与评估
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yifei Shao;Yuwei Wu;Laura Jarin;Pratik Chaudhari;Vijay Kumar - 通讯作者:
Vijay Kumar
Real-time Vehicle Count, Speed Estimation and Number Plate Detection using CCTV Footage
使用闭路电视录像进行实时车辆计数、速度估计和车牌检测
- DOI:
10.1109/icccee55951.2023.10424558 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
P. S. Gaikwad;Pratik Chaudhari;Pragati Bhole;Vinayak Girhe;Aniruddh Karekar - 通讯作者:
Aniruddh Karekar
Generative models of MRI-derived neuroimaging features and associated dataset of 18,000 samples
磁共振成像衍生的神经影像特征的生成模型以及包含 18000 个样本的相关数据集
- DOI:
10.1038/s41597-024-04157-4 - 发表时间:
2024-12-05 - 期刊:
- 影响因子:6.900
- 作者:
Sai Spandana Chintapalli;Rongguang Wang;Zhijian Yang;Vasiliki Tassopoulou;Fanyang Yu;Vishnu Bashyam;Guray Erus;Pratik Chaudhari;Haochang Shou;Christos Davatzikos - 通讯作者:
Christos Davatzikos
Active Scout: Multi-Target Tracking Using Neural Radiance Fields in Dense Urban Environments
Active Scout:在密集城市环境中使用神经辐射场进行多目标跟踪
- DOI:
10.48550/arxiv.2406.07431 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Christopher D. Hsu;Pratik Chaudhari - 通讯作者:
Pratik Chaudhari
Automated estimation of microcirculation capillary density using relative perfusion maps
使用相对灌注图自动估计微循环毛细血管密度
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Rohit Jena;Yifan Wu;John C. Greenwood;Pratik Chaudhari;James C. Gee - 通讯作者:
James C. Gee
Pratik Chaudhari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pratik Chaudhari', 18)}}的其他基金
Collaborative Research: RI: Medium: MoDL: Occams Razor in Deep and Physical Learning
合作研究:RI:媒介:MoDL:深度学习和物理学习中的奥卡姆斯剃刀
- 批准号:
2212519 - 财政年份:2022
- 资助金额:
$ 54.91万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 54.91万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 54.91万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
- 批准号:
2313131 - 财政年份:2023
- 资助金额:
$ 54.91万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
- 批准号:
2329938 - 财政年份:2023
- 资助金额:
$ 54.91万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247795 - 财政年份:2023
- 资助金额:
$ 54.91万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
- 批准号:
2247794 - 财政年份:2023
- 资助金额:
$ 54.91万 - 项目类别:
Continuing Grant
CIF: SMALL: Theoretical Foundations of Partially Observable Reinforcement Learning: Minimax Sample Complexity and Provably Efficient Algorithms
CIF:SMALL:部分可观察强化学习的理论基础:最小最大样本复杂性和可证明有效的算法
- 批准号:
2315725 - 财政年份:2023
- 资助金额:
$ 54.91万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
- 批准号:
2308445 - 财政年份:2023
- 资助金额:
$ 54.91万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Theoretical Foundations of Quantum Pseudorandom Primitives
合作研究:FET:小型:量子伪随机原语的理论基础
- 批准号:
2329939 - 财政年份:2023
- 资助金额:
$ 54.91万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
- 批准号:
2308446 - 财政年份:2023
- 资助金额:
$ 54.91万 - 项目类别:
Standard Grant