CAREER: Overcoming bias in computer vision: Building fairer systems and training diverse leaders

职业:克服计算机视觉中的偏见:建立更公平的系统并培训多元化的领导者

基本信息

  • 批准号:
    2145198
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-15 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

Artificial Intelligence (AI) systems have become an integral part of daily life. These systems provide access to information about current events, guide shopping experiences, and allow communication across language boundaries. For example, computer vision systems (which make automated decisions based on visual information from photos or videos) are becoming increasingly deployed in high-stakes applications such as autonomous driving or medical diagnosis. However, automated AI systems have been known to capture, propagate and even amplify historical biases, stereotypes, and disparities: known issues in computer vision include racial bias in face recognition, geographic bias in object detection, and gender bias in activity understanding, to name a few. This project focuses on developing practical bias mitigation strategies for computer vision systems. The work is integral to ensuring the ethical and equitable deployment of computer vision in high-stakes applications. There is a rich and growing literature on mitigating social bias in AI systems generally. Much of it studies bias in models with tabular or text input, such as criminal justice records or resumes. Mitigating bias in computer vision requires unique approaches: since the input tokens (single pixels) are uninformative, revealing problematic patterns in data and models is particularly challenging. The project focused on bias in the form of inappropriate correlations between visual protected attributes and predictions of recognition models. It features a multi-pronged approach, which includes developing strategies for mitigating bias in the data (improving data collection processes and leveraging synthetic data), studying how bias propagates from data into downstream models (designing novel interpretability techniques that are well-suited for this goal), and developing strategies for directly mitigating bias in the models (leveraging novel benchmarks and metrics to inform model design). In addition, the project also tackles the problem of homogeneity among current AI researchers, which is one of the root causes of AI bias. Going beyond the technical innovations, the educational component focuses on training and providing leadership pathways for students from historically underrepresented groups starting as early as high school, in partnership with the national nonprofit AI4ALL.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)系统已成为日常生活中不可或缺的一部分。这些系统提供有关当前事件的信息,指导购物体验,并允许跨语言边界的通信。例如,计算机视觉系统(根据照片或视频中的视觉信息做出自动决策)越来越多地部署在自动驾驶或医疗诊断等高风险应用中。然而,众所周知,自动化人工智能系统会捕捉、传播甚至放大历史偏见、刻板印象和差异:计算机视觉中的已知问题包括人脸识别中的种族偏见、物体检测中的地理偏见和活动理解中的性别偏见等。该项目的重点是为计算机视觉系统开发实用的偏差缓解策略。这项工作对于确保计算机视觉在高风险应用中的道德和公平部署是不可或缺的。关于减轻人工智能系统中的社会偏见的文献越来越多。其中大部分研究的是表格或文本输入模型中的偏见,如刑事司法记录或简历。减轻计算机视觉中的偏差需要独特的方法:由于输入标记(单个像素)是无信息的,因此揭示数据和模型中的问题模式特别具有挑战性。该项目的重点是偏见的形式之间的视觉保护属性和识别模型的预测不适当的相关性。它采用多管齐下的方法,包括制定减轻数据偏差的策略(改进数据收集过程和利用合成数据),研究偏差如何从数据传播到下游模型(设计适合这一目标的新型可解释性技术),以及制定直接减轻模型偏差的策略(利用新的基准和指标为模型设计提供信息)。此外,该项目还解决了当前人工智能研究人员的同质性问题,这是人工智能偏见的根本原因之一。除了技术创新,教育部分的重点是培训和提供领导的途径,为学生从历史上代表性不足的群体,早在高中开始,与国家非营利组织AI4ALL合作。该奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响力审查标准的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olga Russakovsky其他文献

Best of both worlds: human-machine collaboration for object annotation (preliminary version)
两全其美:人机协作进行对象标注(初步版本)
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Olga Russakovsky
  • 通讯作者:
    Olga Russakovsky
Take the Scenic Route: Improving Generalization in Vision-and-Language Navigation
走风景路线:提高视觉和语言导航的泛化能力
C ORRESPONDENCES BETWEEN WORD LEARNING IN CHILDREN AND CAPTIONING MODELS
儿童单词学习与字幕模型之间的对应关系
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sunayana Rane;Mira L. Nencheva;Zeyu Wang;C. Lew‐Williams;Olga Russakovsky;Thomas L. Griffiths
  • 通讯作者:
    Thomas L. Griffiths
Beyond web-scraping: Crowd-sourcing a geographically diverse image dataset
超越网络抓取:众包地理多样化的图像数据集
  • DOI:
    10.48550/arxiv.2301.02560
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. V. Ramaswamy;S. Lin;Dora Zhao;Aaron B. Adcock;L. Maaten;Deepti Ghadiyaram;Olga Russakovsky
  • 通讯作者:
    Olga Russakovsky
UFO: A unified method for controlling Understandability and Faithfulness Objectives in concept-based explanations for CNNs
UFO:一种在基于概念的 CNN 解释中控制可理解性和可信度目标的统一方法
  • DOI:
    10.48550/arxiv.2303.15632
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. V. Ramaswamy;Sunnie S. Y. Kim;Ruth C. Fong;Olga Russakovsky
  • 通讯作者:
    Olga Russakovsky

Olga Russakovsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Olga Russakovsky', 18)}}的其他基金

RI: Medium: Improving grounding, generalization and contextual reasoning in vision and language models
RI:中:改善视觉和语言模型中的基础、泛化和上下文推理
  • 批准号:
    2107048
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Overcoming the trade-off between thermopower and conductivity in transition metal oxides
职业生涯:克服过渡金属氧化物热电势和电导率之间的权衡
  • 批准号:
    2340234
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Overcoming Programming Barriers for Non-Computing Majors in Data Science
克服数据科学非计算专业的编程障碍
  • 批准号:
    2336929
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
REU Site: Multidisciplinary Approaches for Overcoming Water Resources and Sustainable Engineering Challenges in Appalachian Regions
REU 网站:克服阿巴拉契亚地区水资源和可持续工程挑战的多学科方法
  • 批准号:
    2348814
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Understanding and overcoming community roadblocks to achieving net-zero
了解并克服实现净零排放的社区障碍
  • 批准号:
    FL230100022
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Australian Laureate Fellowships
Collaborative Research: Understanding and overcoming the impediments to high-risk, high-return science
合作研究:理解并克服高风险、高回报科学的障碍
  • 批准号:
    2346644
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding and overcoming the impediments to high-risk, high-return science
合作研究:理解并克服高风险、高回报科学的障碍
  • 批准号:
    2346645
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Research aimed at overcoming perinatal complications caused by endometriosis and adenomyosis.
研究旨在克服子宫内膜异位症和子宫腺肌症引起的围产期并发症。
  • 批准号:
    24K19715
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Overcoming nonlinearity in short-reach optical communication
克服短距离光通信中的非线性
  • 批准号:
    DP230101493
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Discovery Projects
Solving smoke taint: Overcoming the impacts of vineyard exposure to smoke
解决烟雾污染:克服葡萄园暴露于烟雾的影响
  • 批准号:
    LP210300715
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Linkage Projects
Overcoming the limits of anaerobic soil disinfestations by developing innovative methods based on scientific evidences
通过开发基于科学证据的创新方法来克服厌氧土壤灭虫的局限性
  • 批准号:
    23H02353
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了