CAREER: Curing-Induced Microcracking in Thermoset Composites
职业:热固性复合材料中固化引起的微裂纹
基本信息
- 批准号:2145387
- 负责人:
- 金额:$ 56.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) award enables contribution of new knowledge related to the manufacturing process for thermoset composite structures. Thermosets are advanced polymers that can be reinforced with high-strength fibers to create lightweight composite materials with complex architectures. Their manufacturing process involves chemical curing reactions, heat generation, and heat conduction that result in a change of phase from a liquid polymer mixture to a cross-linked solid structure. Stresses built up during the process can cause very small cracks to be formed, which can contribute to subsequent failures in the structure. Extensive curing-induced microcracking is a key technological challenge in the production of critical structural components for space exploration, wind energy production, and current and future transportation. The manufacturability of the next generation of high-performance, lightweight structures depends upon fabricating damage-free complex composites with enhanced mechanical properties. This award supports fundamental computational and experimental research to provide the necessary knowledge for developing crack-free thermosets, optimizing composite performance, and reducing the time and cost to create better composite parts. This research program will be integrated with educational and outreach activities, including developing an e-learning platform with engaging learning activities, K12 summer programs, and internships that aim to broaden the participation of underrepresented groups in research and positively impact engineering education. The research goal of this project is to reveal the fundamental mechanisms of curing-induced microcracking in thermoset composites. This project will establish process-property relationships to predict curing-induced damage mechanisms in thermosets across the micro and macro scales, which will enable new manufacturing capabilities. Knowledge generated from this research will allow manufacturers to tailor their processes to prevent curing-induced damage. This project will test the hypothesis that layer/layer and fiber/matrix property mismatches and resin shrinkage cause microcracking when the material is processed below its glass transition temperature and after gelation, depending on the resin viscosity and toughness. Advanced multiscale process modeling techniques that account for thermal gradients, resin exothermic reactions, mismatch in thermomechanical properties, shrinkage, and residual stresses will be implemented. A new time-independent characterization technique for determining material properties at intermediate degrees of cure based on off-stoichiometry polymer proxies will be tested. This novel approach to learning constitutive relations of thermosets during curing will be used to identify and quantify viscoelastic and viscoplastic resin properties during manufacturing. In-situ testing during curing will aim to validate the approach for three material systems, including 3D woven textiles, bonded adhesives, and thermosets for additive manufacturing. The planned result is an experimentally-validated physics-based multiscale process modeling framework to design and optimize enhanced composites which can help the composite industry by providing a missing link between material, manufacturing, and properties in order to prevent microcracking.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CALEAR)奖旨在帮助您贡献与热固性复合材料结构制造工艺相关的新知识。热固性树脂是一种先进的聚合物,可以用高强度纤维进行增强,以创建具有复杂结构的轻质复合材料。它们的制造过程包括化学固化反应、热产生和热传导,导致相从液体聚合物混合物转变为交联型固体结构。在此过程中积累的应力可能会导致形成非常小的裂缝,这可能会导致结构的后续故障。在空间探索、风能生产、当前和未来运输的关键结构部件的生产中,广泛的固化诱导微裂缝是一个关键的技术挑战。下一代高性能、轻量化结构的可制造性取决于制造具有更高机械性能的无损伤复杂复合材料。该奖项支持基础计算和实验研究,为开发无裂纹热固性材料、优化复合材料性能以及减少制造更好复合材料部件所需的时间和成本提供必要的知识。这项研究计划将与教育和外展活动相结合,包括开发一个电子学习平台,开展引人入胜的学习活动、K12暑期计划和实习,旨在扩大代表不足的群体参与研究并积极影响工程教育。本课题的研究目标是揭示热固性复合材料固化诱发微裂纹的基本机理。该项目将建立工艺-性能关系,以预测微观和宏观范围内热固性树脂的固化损伤机制,这将使新的制造能力成为可能。这项研究产生的知识将使制造商能够量身定做他们的工艺,以防止固化引起的损害。该项目将测试一种假设,即层/层和纤维/基质特性不匹配和树脂收缩导致材料在低于其玻璃化转变温度并在胶凝后产生微裂纹,具体取决于树脂的粘度和韧性。将实施先进的多尺度工艺建模技术,包括温度梯度、树脂放热反应、热机械性能不匹配、收缩和残余应力。将测试一种新的与时间无关的表征技术,用于确定基于非化学计量比聚合物代理的中等固化程度的材料性能。这种在固化过程中学习热固性树脂本构关系的新方法将用于在制造过程中识别和量化粘弹性和粘塑性树脂的性能。固化过程中的现场测试将旨在验证三种材料系统的方法,包括3D机织纺织品、粘合粘合剂和用于添加剂制造的热固性材料。计划的结果是一个经过实验验证的基于物理的多尺度工艺建模框架,用于设计和优化增强型复合材料,通过提供材料、制造和性能之间的缺失链接来帮助复合材料行业,以防止微裂纹。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PROGRESSIVE DAMAGE ANALYSIS OF STEEL-REINFORCED CONCRETE BEAMS USING HIGHER-ORDER 1D FINITE ELEMENTS
使用高阶一维有限元的钢筋混凝土梁渐进损伤分析
- DOI:10.1615/intjmultcompeng.2022045649
- 发表时间:2023
- 期刊:
- 影响因子:1.4
- 作者:Nagaraj, Manish H.;Maiaru, M.
- 通讯作者:Maiaru, M.
ANALYTICAL MODEL FOR COMPOSITE TRANSVERSE STRENGTH BASED ON COMPUTATIONAL MICROMECHANICS
基于计算微观力学的复合材料横向强度解析模型
- DOI:10.1615/intjmultcompeng.2023048428
- 发表时间:2023
- 期刊:
- 影响因子:1.4
- 作者:Shah, Sagar P.;Maiarù, Marianna
- 通讯作者:Maiarù, Marianna
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marianna Maiaru其他文献
Bond exchange reactions as a paradigm for mitigating residual stress in polymer matrix fiber composites
键交换反应作为减轻聚合物基纤维复合材料残余应力的范例
- DOI:
10.1016/j.ijsolstr.2025.113286 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:3.800
- 作者:
Zhongtong Wang;Robert J. Wagner;Tianke Chen;Sagar P. Shah;Marianna Maiaru;Meredith N. Silberstein - 通讯作者:
Meredith N. Silberstein
High-performance, multi-component epoxy resin simulation for predicting thermo-mechanical property evolution during curing
高性能多组分环氧树脂模拟用于预测固化过程中的热机械性能演变
- DOI:
10.1038/s41428-025-01022-y - 发表时间:
2025-02-10 - 期刊:
- 影响因子:2.700
- 作者:
Sagar Umesh Patil;Josh Kemppainen;Marianna Maiaru;Gregory M. Odegard - 通讯作者:
Gregory M. Odegard
Adhesive curing cycle time optimization in wind turbine blade manufacturing
- DOI:
10.1016/j.renene.2020.08.043 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:
- 作者:
Philipp Lux;Alessandro G. Cassano;Stephen B. Johnson;Marianna Maiaru;Scott E. Stapleton - 通讯作者:
Scott E. Stapleton
Marianna Maiaru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marianna Maiaru', 18)}}的其他基金
QRM: Microstructural Quantification and Virtual Reconstruction of Polymer Matrix Composites within the Integrated Computational Materials Engineering (ICME) Approach
QRM:集成计算材料工程 (ICME) 方法中聚合物基复合材料的微观结构量化和虚拟重建
- 批准号:
1826232 - 财政年份:2018
- 资助金额:
$ 56.83万 - 项目类别:
Standard Grant
相似海外基金
Heating with light: photonic curing for photovoltaic technologies
光加热:光伏技术的光子固化
- 批准号:
EP/Y022270/1 - 财政年份:2024
- 资助金额:
$ 56.83万 - 项目类别:
Research Grant
Investigation on surface microstructure of steam-cured fly ash concrete and enhancement of the durability by internal curing
蒸养粉煤灰混凝土表面微观结构研究及内部养护增强耐久性
- 批准号:
23K03986 - 财政年份:2023
- 资助金额:
$ 56.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a curing planning method considering both low carbonization and productivity improvement
开发兼顾低碳化和生产率提高的固化计划方法
- 批准号:
23K03998 - 财政年份:2023
- 资助金额:
$ 56.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
FMSG: Eco: Off-Grid Construction via Sustainable Compression Curing of Vegetable Oil-Impregnated Sediments
FMSG:生态:通过植物油浸渍沉积物的可持续压缩固化进行离网建设
- 批准号:
2423166 - 财政年份:2023
- 资助金额:
$ 56.83万 - 项目类别:
Standard Grant
Elucidation of the mechanism of tomato intumescence during graft curing
嫁接固化过程中番茄膨胀机制的阐明
- 批准号:
23K05460 - 财政年份:2023
- 资助金额:
$ 56.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
STTR Phase I: A Novel Biorational Approach to Curing Honey Bees
STTR 第一阶段:一种新的生物理性治疗蜜蜂方法
- 批准号:
2152247 - 财政年份:2023
- 资助金额:
$ 56.83万 - 项目类别:
Standard Grant
Curing Through Collaboration: Utilizing Cooperative Groups in the Fight Against Chronic Lymphocytic Leukemia and B-cell Lymphomas
通过合作进行治愈:利用合作团体对抗慢性淋巴细胞白血病和 B 细胞淋巴瘤
- 批准号:
10566833 - 财政年份:2023
- 资助金额:
$ 56.83万 - 项目类别:
Curing Through Collaboration: Utilizing Cooperative Groups in the Fight Against Chronic Lymphocytic Leukemia and B-cell Lymphomas
通过合作进行治愈:利用合作团体对抗慢性淋巴细胞白血病和 B 细胞淋巴瘤
- 批准号:
10987699 - 财政年份:2023
- 资助金额:
$ 56.83万 - 项目类别:
FMSG: Eco: Off-Grid Construction via Sustainable Compression Curing of Vegetable Oil-Impregnated Sediments
FMSG:生态:通过植物油浸渍沉积物的可持续压缩固化进行离网建设
- 批准号:
2229267 - 财政年份:2022
- 资助金额:
$ 56.83万 - 项目类别:
Standard Grant
I-Corps: Enhanced Radiation Curing From Plant Derived Materials
I-Corps:植物源材料的增强辐射固化
- 批准号:
2228848 - 财政年份:2022
- 资助金额:
$ 56.83万 - 项目类别:
Standard Grant