CAREER: Physics-Reinforced Data-Driven Prognostics and Co-Design for Marine Hydrokinetic Energy Systems
职业:海洋流体动力能源系统的物理强化数据驱动预测和协同设计
基本信息
- 批准号:2145571
- 负责人:
- 金额:$ 63.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) project will fundamentally advance knowledge related to the monitoring and design of marine and hydrokinetic (MHK) energy systems, including marine current turbines and wave energy converters. MHK systems could contribute significantly to a diversified energy economy, improving the nation’s energy security and reducing reliance on fossil fuels. However, these systems generate power from puissant resources, such as strong water currents and/or large waves, which impose physical stresses on the equipment that are several times greater than wind turbines of similar power ratings. These constraints lead to stringent design requirements that increase capital costs. Further, operation and maintenance costs are high because access to equipment is limited due to their offshore geographical location and harsh corrosive environments. This research project will provide the theoretical and computational foundation to enhance MHK systems’ maintainability, survivability, and efficiency. The long-term goal of this project is to transform the conventional MHK turbine design process from a sequential approach, where subsystems are designed individually and strong coupling among them is neglected, generally leading to a suboptimal design, to a novel co-design framework that simultaneously accounts for control, reliability and operational expenditure of the overall MHK system with coupled subsystems. This simultaneous co-design at the earliest stage allows for mutually beneficial subsystems and could significantly improve the overall system performance. This project will thus improve energy systems and accelerate progress in the blue economy. Results will be disseminated in collaboration with the National Renewable Energy Lab and industry partners, as well as through open-source tools, accelerating technology transfer. Outcomes will be integrated into new research-intensive curricula and a new energy resiliency certificate, and opportunities will be provided to students from groups underrepresented in STEM to participate in marine renewable energy research.This research project aims to develop efficient and robust prognostics (prediction of the remaining useful life) and diagnostics (fault detection and identification) tools of MHK turbines, for the goal of establishing a unified design framework that accounts for control, reliability, and operational expenditure of MHK systems. The project will explore a spectrum of tools from domain mechanistic models to deep learning. The research activities will integrate domain-specific physics knowledge and multi-source data in a synergistic manner. Specifically, the project will address the following three research challenges. (1) The data scarcity challenge: there are not enough data to train an effective prognostics/diagnostics model for MHK because the industry is new. This project will develop a novel physics-reinforced knowledge transfer learning approach for designing efficient models that uses wind big data as the source domain, constrained by the physics in MHK as the target domain. (2) The data quality and concept drift challenge: system dynamics may change over time and sensor data are subject to failures because MHK devices are to be deployed in harsh, remote areas for long-term operation. This project will develop a novel graph and reinforcement learning approach for designing robust models using both sensor network structure information and stream pattern of multi-sensor time series. (3) The heterogeneous, multi-directional couplings and co-optimization challenge: turbine geometry, control, reliability, and maintenance strategies should be designed simultaneously to optimize MHK turbine performance. This project will build responsive surface models, that represent the relationships between design parameters and performance index, based on both experimental data and dynamical simulations. White-box co-optimization tools based on deep neural decision trees will be developed to optimize the turbine design parameters. Taken together, results from this research will establish a solid foundation for robust predictive monitoring and co-design of complex large-scale dynamic systems, such as onshore and floating offshore wind farms, connected vehicles, and intelligent structures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)项目将从根本上推进与海洋和流体动力(MHK)能源系统(包括海流涡轮机和波浪能转换器)的监测和设计相关的知识。MHK系统可以为能源经济的多元化做出重大贡献,提高国家的能源安全并减少对化石燃料的依赖。然而,这些系统从强力资源(例如强水流和/或大浪)产生电力,其对设备施加比类似额定功率的风力涡轮机大几倍的物理应力。这些限制导致严格的设计要求,增加了资本成本。此外,操作和维护成本很高,因为由于其海上地理位置和恶劣的腐蚀性环境,设备的使用受到限制。本研究计画将提供理论与计算基础,以提升MHK系统的可维护性、生存性与效率。该项目的长期目标是将传统的MHK涡轮机设计过程从顺序方法(子系统单独设计,忽略子系统之间的强耦合,通常导致次优设计)转变为新型协同设计框架(同时考虑具有耦合子系统的整个MHK系统的控制、可靠性和运营支出)。这种在最早阶段的同步协同设计允许互利的子系统,并可以显着提高整个系统的性能。因此,该项目将改善能源系统,加快蓝色经济的进展。将与国家可再生能源实验室和行业合作伙伴合作,并通过开源工具传播成果,加速技术转让。研究成果将被纳入新的研究密集型课程和新的能源弹性证书,并将为来自STEM代表性不足的群体的学生提供参与海洋可再生能源研究的机会。(剩余使用寿命的预测)和诊断MHK涡轮机(故障检测和识别)工具,目的是建立统一的设计框架,该框架考虑MHK系统的控制、可靠性和操作支出。该项目将探索从领域机械模型到深度学习的一系列工具。研究活动将以协同方式整合特定领域的物理知识和多源数据。具体而言,该项目将解决以下三个研究挑战。(1)数据稀缺的挑战:没有足够的数据来为MHK训练有效的诊断/诊断模型,因为该行业是新的。该项目将开发一种新的物理学强化知识转移学习方法,用于设计高效的模型,该模型使用风大数据作为源域,受MHK中的物理学约束作为目标域。(2)数据质量和概念漂移挑战:系统动态可能会随着时间的推移而变化,传感器数据可能会出现故障,因为MHK设备将部署在恶劣的偏远地区进行长期运行。本计画将发展一种新的图与强化学习方法,利用感测器网路结构资讯与多感测器时间序列的串流模式来设计强健的模型。(3)异构、多向耦合和协同优化挑战:应同时设计涡轮机几何形状、控制、可靠性和维护策略,以优化MHK涡轮机性能。该项目将根据实验数据和动态模拟建立响应表面模型,代表设计参数和性能指标之间的关系。将开发基于深度神经决策树的白盒协同优化工具,以优化涡轮机设计参数。总之,该研究成果将为陆上和海上浮动风电场、互联车辆和智能结构等复杂大型动态系统的稳健预测监测和协同设计奠定坚实的基础。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integrated path planning and control through proximal policy optimization for a marine current turbine
通过海流涡轮机的近端策略优化集成路径规划和控制
- DOI:10.1016/j.apor.2023.103591
- 发表时间:2023
- 期刊:
- 影响因子:4.3
- 作者:Hasankhani, Arezoo;Tang, Yufei;VanZwieten, James
- 通讯作者:VanZwieten, James
Genetic-GNN: Evolutionary architecture search for Graph Neural Networks
- DOI:10.1016/j.knosys.2022.108752
- 发表时间:2022-07-08
- 期刊:
- 影响因子:8.8
- 作者:Shi, Min;Tang, Yufei;Liu, Jianxun
- 通讯作者:Liu, Jianxun
Integrated Path Planning and Tracking Control of Marine Current Turbine in Uncertain Ocean Environments
不确定海洋环境下海流涡轮机综合路径规划与跟踪控制
- DOI:10.23919/acc53348.2022.9867485
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Hasankhani, Arezoo;Ondes, Tugrul Baris;Tang, Yufei;Sultan, Cornel;Van Zwieten, James
- 通讯作者:Van Zwieten, James
Modeling and Real-Time Simulation of Ocean Current Turbines for Grid Integration
用于电网并网的海流涡轮机建模和实时仿真
- DOI:10.1109/pesgm52003.2023.10252303
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Fung, Sasha;Tang, Yufei;VanZwieten, James;Alsenas, Gabriel
- 通讯作者:Alsenas, Gabriel
Spatiotemporal Optimization for Vertical Path Planning of an Ocean Current Turbine
- DOI:10.1109/tcst.2022.3193637
- 发表时间:2023-03
- 期刊:
- 影响因子:4.8
- 作者:Arezoo Hasankhani;Yufei Tang;James H. VanZwieten;C. Sultan
- 通讯作者:Arezoo Hasankhani;Yufei Tang;James H. VanZwieten;C. Sultan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yufei Tang其他文献
Corpus Callosotomy for Patients With Intractable Seizures: An Insight Into the Rapid Relapse
胼胝体切开术治疗顽固性癫痫发作:洞察快速复发
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Chuan;Yufei Tang;Hua Mu;Tao Guo;Yali Du;Xiang;Wen;Wen - 通讯作者:
Wen
Rapid Self‐Expansion Behavior of the PMMA‐Based Bone Cement with P(MMA‐AA)‐GO Nano‐Units
含有 P(MMA-AA)-GO 纳米单元的 PMMA-基骨水泥的快速自膨胀行为
- DOI:
10.1002/mame.202000749 - 发表时间:
2021-03 - 期刊:
- 影响因子:3.9
- 作者:
Lei Chen;Yufei Tang;Kang Zhao;Jiaxin Liu;Xiashu Jiang;Yani Sun;Zixiang Wu - 通讯作者:
Zixiang Wu
Porous Titanium Scaffolds with Aligned Lamellar Pore Channels by Directional Freeze-Casting from Aqueous TiH2 Slurries
通过水性 TiH2 浆料定向冷冻铸造制备具有对齐层状孔道的多孔钛支架
- DOI:
10.1007/s12540-018-0182-8 - 发表时间:
2018-08 - 期刊:
- 影响因子:3.5
- 作者:
Mengchen Mao;Yufei Tang;Kang Zhao;Zihao Duan;Cong Wu - 通讯作者:
Cong Wu
Fabrication and permeability of HA gradient porous substrates by multiple freeze-tape-casting
多次冷冻流延法制备 HA 梯度多孔基质及其渗透性
- DOI:
10.1016/j.ceramint.2018.04.014 - 发表时间:
2018-07 - 期刊:
- 影响因子:5.2
- 作者:
Yufei Tang;Mengchen Mao;Rong Xu;Kang Zhao;Zihao Duan - 通讯作者:
Zihao Duan
Preparation and Properties of SiC/Phenolic Resin for the Heat of LED
LED散热用SiC/酚醛树脂的制备及性能
- DOI:
10.4028/www.scientific.net/msf.848.454 - 发表时间:
2016-03 - 期刊:
- 影响因子:0
- 作者:
Cong Wu;Kang Zhao;Yufei Tang;Jiyuan Ma - 通讯作者:
Jiyuan Ma
Yufei Tang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yufei Tang', 18)}}的其他基金
Collaborative Research: Implementation: Medium: Secure, Resilient Cyber-Physical Energy System Workforce Pathways via Data-Centric, Hardware-in-the-Loop Training
协作研究:实施:中:通过以数据为中心的硬件在环培训实现安全、有弹性的网络物理能源系统劳动力路径
- 批准号:
2320972 - 财政年份:2023
- 资助金额:
$ 63.45万 - 项目类别:
Standard Grant
REU Site: CNS: Sensing and Smart Systems
REU 网站:CNS:传感和智能系统
- 批准号:
1950400 - 财政年份:2020
- 资助金额:
$ 63.45万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: Interdisciplinary Training of Data-Centric Security and Resilience of Cyber-Physical Energy Infrastructures
合作研究:网络培训:试点:以数据为中心的网络物理能源基础设施安全性和弹性的跨学科培训
- 批准号:
2017597 - 财政年份:2020
- 资助金额:
$ 63.45万 - 项目类别:
Standard Grant
相似国自然基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Chinese Physics B
- 批准号:11224806
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Frontiers of Physics 出版资助
- 批准号:11224805
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese physics B
- 批准号:11024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Discovering early biomarkers of Alzheimer's disease using genetic and physics-informed networks
利用遗传和物理信息网络发现阿尔茨海默病的早期生物标志物
- 批准号:
2904538 - 财政年份:2024
- 资助金额:
$ 63.45万 - 项目类别:
Studentship
Searching for New Physics with the CMS experiment at the LHC
通过 LHC 的 CMS 实验寻找新物理
- 批准号:
2908368 - 财政年份:2024
- 资助金额:
$ 63.45万 - 项目类别:
Studentship
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
- 批准号:
EP/Y027930/1 - 财政年份:2024
- 资助金额:
$ 63.45万 - 项目类别:
Fellowship
Unveiling the Physics of High-Density Relativistic Pair Plasma Jets in the Laboratory
在实验室中揭示高密度相对论对等离子体射流的物理原理
- 批准号:
EP/Y035038/1 - 财政年份:2024
- 资助金额:
$ 63.45万 - 项目类别:
Research Grant
Astroparticle Physics with a Trapped Electron
俘获电子的天体粒子物理学
- 批准号:
EP/Y036263/1 - 财政年份:2024
- 资助金额:
$ 63.45万 - 项目类别:
Research Grant
LHCb Upgrade II: preconstruction for the ultimate LHC flavour physics experiment
LHCb 升级 II:终极 LHC 风味物理实验的预构建
- 批准号:
ST/X006484/1 - 财政年份:2024
- 资助金额:
$ 63.45万 - 项目类别:
Research Grant
Nuclear Physics Consolidated Grant
核物理综合拨款
- 批准号:
ST/Y000277/1 - 财政年份:2024
- 资助金额:
$ 63.45万 - 项目类别:
Research Grant
Manchester Nuclear Physics CG 2023
曼彻斯特核物理 CG 2023
- 批准号:
ST/Y000323/1 - 财政年份:2024
- 资助金额:
$ 63.45万 - 项目类别:
Research Grant
Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
- 批准号:
2321102 - 财政年份:2024
- 资助金额:
$ 63.45万 - 项目类别:
Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 63.45万 - 项目类别:
Standard Grant