CAREER: Developing Actionable Methods for Observational Health Data

职业:为观察健康数据开发可行的方法

基本信息

  • 批准号:
    2145625
  • 负责人:
  • 金额:
    $ 55.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Observational health data contain large amounts of clinical information (e.g., comorbidities, prescriptions, and laboratory results) about heterogeneous patients and their responses to treatments in real-world settings. Many existing machine learning works focus on making predictions on observational data (e.g., chance of death or risk of heart attack) instead of providing actionable suggestions to physicians (e.g., when to use which drug for a specific patient). Developing actionable models for observational data is challenging in three aspects: 1) complex confounding factors that infect both treatment assignments and disease progression outcomes; 2) interpretability of treatment recommendation for actionable decision support; and 3) transferability of well-trained models to different environments. To address these challenges, the project will integrate deep learning algorithms and causal inference techniques to develop actionable methods for observational health data. The research team will closely collaborate with medical researchers and physicians for model validation on various clinical problems, and will actively seek technology transfer opportunities. The project will provide graduate and undergraduate students with new programs, courses, research, and internship opportunities on machine learning for healthcare applications. The project will also actively include underrepresented students and outreach to high schools and the general public.The project will integrate deep learning algorithms and causal inference techniques for modeling longitudinal observational data and adjusting confounding factors, and develop actionable methods for observational data with two complementary tasks: individual treatment effects (ITEs), which estimate improvement in the outcome of taking a particular action to a particular target; and dynamic treatment regimes (DTRs), which derive a sequence of decision rules, one per stage of intervention, based on evolving treatment and covariate history. In the first thrust, the research team will model time-varying and hidden confounders by recurrently modeling historical information in observational health data for estimating ITEs; the researchers will generate a personalized treatment timing recommendation with an uncertainty quantification that achieves optimal causal effects; they will provide interpretability of treatment recommendations through both variable and global perspectives. In the second thrust, the research team will remove the confounding bias in observational health data via patient resampling and balancing weights; the researchers will develop a deconfounding reinforcement learning model for DTR learning, which simultaneously considers short-term and long-term rewards; they will introduce a policy adaptation method to the proposed model to transfer the learned DTR policies to new-source datasets. The project will result in the dissemination of new methods and software for irregularly spaced time series to the broader machine learning and healthcare communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。观察性健康数据包含大量临床信息(例如,共病、处方和实验室结果),了解异质性患者及其在现实世界环境中对治疗的反应。许多现有的机器学习工作专注于对观测数据进行预测(例如,死亡的可能性或心脏病发作的风险)而不是向医生提供可行的建议(例如,什么时候给病人服用什么药)。为观察数据开发可操作的模型在三个方面具有挑战性:1)影响治疗分配和疾病进展结局的复杂混杂因素; 2)治疗建议的可解释性,以支持可操作的决策; 3)训练有素的模型可转移到不同的环境。为了应对这些挑战,该项目将整合深度学习算法和因果推理技术,为观察性健康数据开发可行的方法。研究团队将与医学研究人员和医生密切合作,就各种临床问题进行模型验证,并将积极寻求技术转让机会。该项目将为研究生和本科生提供新的计划,课程,研究和实习机会,用于医疗保健应用的机器学习。该项目将整合深度学习算法和因果推理技术,用于对纵向观测数据进行建模并调整混杂因素,并为观测数据开发可操作的方法,其中包括两个互补的任务:个别治疗效果(ITE),估计对特定目标采取特定行动的结果改善;和动态治疗方案(DTR),其基于不断发展的治疗和协变量历史导出一系列决策规则,每个干预阶段一个。在第一个推力中,研究小组将通过对观察性健康数据中的历史信息进行循环建模来对时变和隐藏的混杂因素进行建模,以估计ITE;研究人员将生成个性化的治疗时机建议,其中具有实现最佳因果效应的不确定性量化;他们将通过变量和全局视角提供治疗建议的可解释性。在第二个方面,研究小组将通过患者恢复和平衡权重来消除观察性健康数据中的混淆偏差;研究人员将开发一种用于DTR学习的去混淆强化学习模型,同时考虑短期和长期奖励;他们将引入一种策略适应方法到拟议的模型中,将学习到的DTR策略转移到新的源数据集。这个奖项反映了NSF的法定使命,通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DREAM: Domain Invariant and Contrastive Representation for Sleep Dynamics
Estimating treatment effects for time-to-treatment antibiotic stewardship in sepsis.
估计败血症的时间处理抗生素管理的治疗效果。
  • DOI:
    10.1038/s42256-023-00638-0
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    23.8
  • 作者:
    Liu, Ruoqi;Hunold, Katherine M.;Caterino, Jeffrey M.;Zhang, Ping
  • 通讯作者:
    Zhang, Ping
Fairness and Accuracy Under Domain Generalization
  • DOI:
    10.48550/arxiv.2301.13323
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thai-Hoang Pham;Xueru Zhang;Ping Zhang
  • 通讯作者:
    Thai-Hoang Pham;Xueru Zhang;Ping Zhang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ping Zhang其他文献

Optical image encryption by using diffractive imaging with special constraint in the input plane
使用输入平面上具有特殊约束的衍射成像进行光学图像加密
  • DOI:
    10.5277/oa160105
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Zhipeng Wang;Hongjuan Wang;Xingqiang Yang;Ping Zhang;Chenxia Hou;Yi Qin
  • 通讯作者:
    Yi Qin
The Relationship between Social Support and Quality of Life: Evidence from a Prospective Study in Chinese Patients with Esophageal Carcinoma
社会支持与生活质量之间的关系:来自中国食管癌患者的前瞻性研究的证据
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Yanjie Wang;Li;Fang Yuan;Li;Zhen Jia;Dongming Chen;Ping Zhang;Zhanchun Feng
  • 通讯作者:
    Zhanchun Feng
Drought risk assessment in China with differentspatial scales
中国不同空间尺度的干旱风险评估
  • DOI:
    10.1007/s12517-015-1938-9
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Baisha Weng;Ping Zhang;Sinuo Li
  • 通讯作者:
    Sinuo Li
Enhancement of electron-impact ionization induced by warm dense environments
温暖致密环境引起的电子轰击电离的增强
  • DOI:
    10.1103/physreve.104.035204
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Ping Zhang;Yang Jin;Xiaolei Zan;Pengfei Liu;Yongjun Li;Cheng Gao;Yong Hou;Jiaolong Zeng;Jianmin Yuan
  • 通讯作者:
    Jianmin Yuan
Predicting intensive care outcomes in traumatic brain injury using heart rate variability measures with feature extraction strategies
使用心率变异性测量和特征提取策略来预测创伤性脑损伤的重症监护结果

Ping Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ping Zhang', 18)}}的其他基金

Trans-activation of the Drosophila Y Chromosome in Spermatogenesis
精子发生中果蝇 Y 染色体的反式激活
  • 批准号:
    0077817
  • 财政年份:
    2000
  • 资助金额:
    $ 55.68万
  • 项目类别:
    Continuing Grant

相似海外基金

Developing a Digital Platform for Providing Scalable and Actionable Feedback to Support Students' Development of Professional Skills
开发一个数字平台,提供可扩展且可操作的反馈,以支持学生的专业技能发展
  • 批准号:
    2235606
  • 财政年份:
    2023
  • 资助金额:
    $ 55.68万
  • 项目类别:
    Standard Grant
Developing a Digital Platform for Providing Scalable and Actionable Feedback to Support Students' Development of Professional Skills
开发一个数字平台,提供可扩展且可操作的反馈,以支持学生的专业技能发展
  • 批准号:
    2235614
  • 财政年份:
    2023
  • 资助金额:
    $ 55.68万
  • 项目类别:
    Standard Grant
Developing a "state of the art" reasoning engine to extract forward looking and actionable insights for financial institutions from unstructured data sets
开发“最先进”的推理引擎,从非结构化数据集中为金融机构提取前瞻性且可行的见解
  • 批准号:
    10054206
  • 财政年份:
    2023
  • 资助金额:
    $ 55.68万
  • 项目类别:
    Collaborative R&D
Developing new therapeutic strategies for pediatric tumors that lack clinically actionable mutations
为缺乏临床可行突变的儿科肿瘤开发新的治疗策略
  • 批准号:
    10374132
  • 财政年份:
    2021
  • 资助金额:
    $ 55.68万
  • 项目类别:
Developing new therapeutic strategies for pediatric tumors that lack clinically actionable mutations
为缺乏临床可行突变的儿科肿瘤开发新的治疗策略
  • 批准号:
    10184211
  • 财政年份:
    2021
  • 资助金额:
    $ 55.68万
  • 项目类别:
Developing new therapeutic strategies for pediatric tumors that lack clinically actionable mutations
为缺乏临床可行突变的儿科肿瘤开发新的治疗策略
  • 批准号:
    10672878
  • 财政年份:
    2021
  • 资助金额:
    $ 55.68万
  • 项目类别:
Developing actionable seasonal climate information for the wind and solar energy industry
为风能和太阳能行业开发可操作的季节性气候信息
  • 批准号:
    NE/P010113/1
  • 财政年份:
    2017
  • 资助金额:
    $ 55.68万
  • 项目类别:
    Training Grant
Developing actionable seasonal climate information for the wind and solar energy industry
为风能和太阳能行业开发可操作的季节性气候信息
  • 批准号:
    1926979
  • 财政年份:
    2017
  • 资助金额:
    $ 55.68万
  • 项目类别:
    Studentship
Predictive analytics and Policing: Translating cutting-edge academic research into actionable intelligence and developing useable software tools
预测分析和警务:将尖端学术研究转化为可操作的情报并开发可用的软件工具
  • 批准号:
    ES/K000721/1
  • 财政年份:
    2013
  • 资助金额:
    $ 55.68万
  • 项目类别:
    Research Grant
Developing Actionable Feedback Using Administrative Data for Secondary Prevention of MI.
使用行政数据制定可行的反馈以进行心肌梗死的二级预防。
  • 批准号:
    182237
  • 财政年份:
    2009
  • 资助金额:
    $ 55.68万
  • 项目类别:
    Studentship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了