CAREER: Towards theoretical foundations of neural network based representation learning

职业:迈向基于神经网络的表示学习的理论基础

基本信息

  • 批准号:
    2145703
  • 负责人:
  • 金额:
    $ 64.09万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

Building up good representations of input data has always been a central ingredient in machine learning. In computer vision, for example, one would like to have features representing the main objects in the image. In natural language processing, one would like to have features indicating the relationship between different words. A new paradigm shift in machine learning based on deep learning techniques has demonstrated the ability of machines to automatically learn good representations from the training data set without any prior knowledge. However, although these features are really useful for machines to learn the data set, are they actually "good" according to human standards? The project aims to contribute to the fundamental understanding of deep representation learning and inform the practical advancement of deep learning, improving its interpretability, robustness, and efficiency in large data regimes. The investigator will also develop a new graduate-level course and a public interactive software through the course of this project. The project aims to build a comprehensive theory for the new generation of neural-network-based representation-learning techniques. This includes the central questions of characterizing the statistical properties of the representations and how they are encoded in an actual neural network. This project has three major components. The first thrust is to characterize when would minimizing the training objective of the representation learning task leads to a unique representation in the neural network: leveraging the new theoretical development, the investigator will build up new training objectives that encourage such uniqueness. The second thrust is to theoretically study what representations can be efficiently learned by deep-learning models, and how are they encoded in the hidden weights of the neural networks after training. Finally, the investigator will study what statistical properties of the learned representations made them good for downstream tasks, which is critical to improving the interpretability of these neural network-based representations. Moreover, it will allow humans to better interact with deep-learning models for broader applications such as self-driving cars.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
建立良好的输入数据表示一直是机器学习的核心内容。例如,在计算机视觉中,人们希望具有代表图像中主要对象的特征。在自然语言处理中,人们希望具有指示不同单词之间的关系的特征。 基于深度学习技术的机器学习的新范式转变已经证明了机器在没有任何先验知识的情况下自动从训练数据集中学习良好表示的能力。然而,尽管这些功能对于机器学习数据集确实很有用,但按照人类的标准,它们真的“好”吗? 该项目旨在促进对深度表示学习的基本理解,并为深度学习的实际进展提供信息,提高其在大数据体系中的可解释性,鲁棒性和效率。调查员还将通过该项目的过程开发一个新的研究生课程和一个公共互动软件。该项目旨在为新一代基于神经网络的表示学习技术建立一个全面的理论。这包括表征表征的统计特性以及它们如何在实际神经网络中编码的核心问题。该项目有三个主要组成部分。第一个重点是表征何时最小化表征学习任务的训练目标会导致神经网络中的独特表征:利用新的理论发展,研究人员将建立新的训练目标,鼓励这种独特性。第二个重点是从理论上研究深度学习模型可以有效地学习哪些表示,以及它们在训练后如何编码到神经网络的隐藏权重中。最后,研究人员将研究学习到的表示的统计特性使它们适合下游任务,这对于提高这些基于神经网络的表示的可解释性至关重要。此外,它将使人类能够更好地与深度学习模型进行交互,以实现更广泛的应用,如自动驾驶汽车。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions
  • DOI:
    10.48550/arxiv.2209.11215
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sitan Chen;Sinho Chewi;Jungshian Li;Yuanzhi Li;A. Salim;Anru R. Zhang
  • 通讯作者:
    Sitan Chen;Sinho Chewi;Jungshian Li;Yuanzhi Li;A. Salim;Anru R. Zhang
Learning Polynomial Transformations via Generalized Tensor Decompositions
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuanzhi Li其他文献

Classification and regression tree methods for incomplete data from sample surveys
抽样调查不完整数据的分类和回归树方法
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wei;J. Eltinge;M. Cho;Yuanzhi Li
  • 通讯作者:
    Yuanzhi Li
Faster Principal Component Regression via Optimal Polynomial Approximation to sgn(x)
通过 sgn(x) 的最优多项式逼近更快的主成分回归
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zeyuan Allen;Yuanzhi Li
  • 通讯作者:
    Yuanzhi Li
Provably learning a multi-head attention layer
可证明学习多头注意力层
  • DOI:
    10.48550/arxiv.2402.04084
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sitan Chen;Yuanzhi Li
  • 通讯作者:
    Yuanzhi Li
A novel synergetic effect and photoactivation lead to very effective UV‐visible‐infrared light‐driven photothermocatalytic CO 2 reduction with CH 4 on Ni/Ni‐doped Al 2 O 3
  • DOI:
    10.1002/solr.202300216
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Youlin Chen;Huamin Cao;Yuanzhi Li;Qianqian Hu;Jichun Wu;Zheyuan Zhang
  • 通讯作者:
    Zheyuan Zhang
Highly efficient UV-visible-infrared light-driven photothermocatalytic steam biomass reforming to H2 on Ni nanoparticles loaded on mesoporous silica
  • DOI:
    10.1039/D2EE00816E
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    32.5
  • 作者:
    Chongyang Zhou;Jichun Wu;Yuanzhi Li;Huamin Cao
  • 通讯作者:
    Huamin Cao

Yuanzhi Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuanzhi Li', 18)}}的其他基金

Collaborative Research: RI: Small: Theoretical Foundations: The Advantage of Deep Learning over Traditional Shallow Learning Methods
合作研究:RI:小型:理论基础:深度学习相对于传统浅层学习方法的优势
  • 批准号:
    2007517
  • 财政年份:
    2020
  • 资助金额:
    $ 64.09万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Towards a Comprehensive Theoretical Framework to Predict Multiscale and Multicomponent Electrolyte Transport in Porous Media
职业:建立一个预测多孔介质中多尺度和多组分电解质传输的综合理论框架
  • 批准号:
    2238412
  • 财政年份:
    2023
  • 资助金额:
    $ 64.09万
  • 项目类别:
    Continuing Grant
Anterior cruciate ligament injury: towards a gendered environmental approach
前十字韧带损伤:走向性别环境方法
  • 批准号:
    485090
  • 财政年份:
    2023
  • 资助金额:
    $ 64.09万
  • 项目类别:
    Operating Grants
Word order in Japanese: Towards a multifaceted approach integrating functional, theoretical, and psycholinguistics
日语词序:走向整合功能、理论和心理语言学的多方面方法
  • 批准号:
    23K12185
  • 财政年份:
    2023
  • 资助金额:
    $ 64.09万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
New eras of catalysis: Towards the development of pseudotransition metal organocatalysts for metal-free cross-coupling transformations
催化新时代:开发用于无金属交叉偶联转化的假过渡金属有机催化剂
  • 批准号:
    10751244
  • 财政年份:
    2023
  • 资助金额:
    $ 64.09万
  • 项目类别:
Anterior cruciate ligament injury: towards a gendered environmental approach
前十字韧带损伤:走向性别环境方法
  • 批准号:
    485099
  • 财政年份:
    2023
  • 资助金额:
    $ 64.09万
  • 项目类别:
    Operating Grants
A Theoretical Paradigm Shift for Compliance of Strategic and Short-term Block Caving Mine Plans towards Sustainable Mineral Development
战略和短期崩落采矿计划合规性的理论范式转变,实现可持续矿产开发
  • 批准号:
    RGPIN-2022-03276
  • 财政年份:
    2022
  • 资助金额:
    $ 64.09万
  • 项目类别:
    Discovery Grants Program - Individual
An Experimental and Theoretical Approach Towards Highly-energetic and Metastable Molecules
研究高能亚稳态分子的实验和理论方法
  • 批准号:
    571822-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 64.09万
  • 项目类别:
    Alliance Grants
Interdisciplinary Studies of Child-Rearing Support for Single Parent Families Towards a Theoretical Construction of Support
单亲家庭育儿支持的跨学科研究构建支持理论
  • 批准号:
    22K01840
  • 财政年份:
    2022
  • 资助金额:
    $ 64.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical development towards systematic studies of nuclear short-range correlation
核短程关联系统研究的理论发展
  • 批准号:
    22K20372
  • 财政年份:
    2022
  • 资助金额:
    $ 64.09万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Towards a B-theoretical 'metaphysical indeterminacy' - account of the open future
走向 B 理论的“形而上学不确定性”——对开放未来的解释
  • 批准号:
    2759787
  • 财政年份:
    2022
  • 资助金额:
    $ 64.09万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了