CAREER: Genomic, cellular, and physiological effects of whole genome duplications on organismal energy production

职业:全基因组复制对生物体能量产生的基因组、细胞和生理学影响

基本信息

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Understanding the genetic underpinnings of how plant cells produce energy represents a central goal in plant biology, especially in the context of crop improvement efforts. However, the connection between genes and the energy-related traits those genes encode is complicated for two primary reasons: (1) energy-related genes are spread across three separate cellular compartments (the nucleus, the chloroplasts, and the mitochondria), and (2) all plants have experienced one or more whole genome duplication events, in which the nuclear genome has been doubled or more, during their evolutionary history. Indeed, many of our most important crop species have more than two copies of their nuclear genome inside their cells. How this “genomic redundancy” affects energy production is largely unknown; however, the balance between nuclear genome copy number and the mitochondria and chloroplasts appears to be critical to plant energy production. We will employ and train a diverse group of early career scientists at New Mexico Tech (Hispanic Serving Institution), to investigate how plant cells maintain this balance. Much of the research will take place in the context of Course-based Research Experiences in which undergraduate and early-stage-graduate students will simultaneously learn the necessary biological techniques and contribute to the understanding of plant bioenergetics. We will also engage high school students in the genomics revolution by sequencing the genomes of creosote and snowflower live-and-in person at Socorro High School (Socorro, NM) and North Tahoe High School (Tahoe City, CA) respectively, and one high-school intern will participate in plant genomics research at NMT each summer.Whole genome duplication events (WGDs), in which the nuclear genome is doubled or more as a result of allopolyploidization or autopolyploidization, are a major force for plant diversification. Because the cytoplasmic genomes are separately replicated (and inherited) from the nuclear genome, the stoichiometric balance between the three genomic compartments (i.e., cytonuclear stoichiometry) is expected to be perturbed following WGD. Recent work indicates that cytonuclear stoichiometry is maintained following WGD in both monocots and eudicots, suggesting that gene dosage balance between the nuclear and cytoplasmic genomes represents an important component of polyploid lineage formation and evolution. We therefore hypothesize that cytonuclear stoichiometry is critical for establishing the cell’s chloroplast and mitochondrial content, such that variation in cytonuclear stoichiometry leads to variation in photosynthetic and respiratory performance and that the genomic architecture of cytonuclear stoichiometry is responsive to changes in nuclear genome size and content. We will test these hypotheses first in diploid, polyploid, and aneuploid contexts by quantifying and measuring organelles, evaluating photosynthetic performance, and comparing nuclear vs. cytoplasmic transcript pools of single cells. We will also perform association tests in the Arabidopsis thaliana genome and confirm those associations with molecular knockouts to disentangle the complex genomic architecture underlying cytonuclear stoichiometry. The diverse coalition of researchers employed as part of this research will be instrumental in setting the stage for future applied efforts aimed at improving metabolic function in polyploid crops, both by addressing knowledge gaps and by adding to the human infrastructure necessary for 21st century agricultural improvement efforts.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。了解植物细胞如何产生能量的遗传基础是植物生物学的核心目标,特别是在作物改良方面。然而,基因和这些基因编码的能量相关性状之间的联系是复杂的,主要有两个原因:(1)能量相关基因分布在三个独立的细胞区室(细胞核,叶绿体和线粒体)中,以及(2)所有植物都经历了一个或多个全基因组复制事件,其中核基因组在其进化历史中已经加倍或更多。事实上,我们许多最重要的作物物种在其细胞内都有两个以上的核基因组拷贝。这种“基因组冗余”如何影响能量生产在很大程度上是未知的;然而,核基因组拷贝数与线粒体和叶绿体之间的平衡似乎对植物能量生产至关重要。我们将在新墨西哥州技术(西班牙裔服务机构)雇用和培训一批不同的早期职业科学家,以研究植物细胞如何保持这种平衡。大部分的研究将发生在基于课程的研究经验的背景下,其中本科生和早期阶段的研究生将同时学习必要的生物技术,并有助于植物生物能量学的理解。我们还将在索科罗高中亲自对杂酚油和雪花的基因组进行测序,(Socorro,NM)和North Tahoe High School(太浩城,加利福尼亚州)分别,一名高中实习生将参加植物基因组学研究在NMT每年夏天。全基因组复制事件(WGD),其中核基因组由于异源多倍化或同源多倍化而加倍或更多,是植物多样化的主要力量。因为细胞质基因组是从核基因组单独复制(和遗传)的,所以三个基因组区室之间的化学计量平衡(即,细胞核化学计量学)预期在WGD之后被扰动。最近的工作表明,细胞核化学计量保持WGD后在单子叶植物和真双子叶植物,这表明,基因剂量之间的核和细胞质基因组的平衡是多倍体谱系形成和进化的重要组成部分。因此,我们假设,细胞核化学计量是至关重要的,建立细胞的叶绿体和线粒体的内容,这样的细胞核化学计量的变化导致光合和呼吸性能的变化,细胞核化学计量的基因组结构是响应于核基因组大小和内容的变化。我们将首先在二倍体、多倍体和非整倍体环境中通过量化和测量细胞器、评估光合性能以及比较单细胞的细胞核与细胞质转录池来测试这些假设。我们还将在拟南芥基因组中进行关联测试,并确认这些关联与分子敲除解开复杂的基因组结构的细胞核化学计量。作为这项研究的一部分,不同的研究人员联盟将有助于为未来旨在改善多倍体作物代谢功能的应用努力奠定基础,通过解决知识差距和增加21世纪世纪农业改良工作所需的人力基础设施。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joel Sharbrough其他文献

Radical amino acid mutations persist longer in the absence of sex
在没有性行为的情况下,自由基氨基酸突变会持续更长时间
  • DOI:
    10.1111/evo.13465
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Joel Sharbrough;Meagan Luse;J. Boore;J. Logsdon;M. Neiman
  • 通讯作者:
    M. Neiman
Genetic variation for mitochondrial function in the New Zealand freshwater snail Potamopyrgus antipodarum
新西兰淡水蜗牛 Potamopyrgus antipodarum 线粒体功能的遗传变异
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joel Sharbrough;J. Cruise;Megan Beetch;Nicole M Enright;M. Neiman
  • 通讯作者:
    M. Neiman
An improved mitochondrial reference genome for Arabidopsis thaliana Col-0
拟南芥 Col-0 的改进线粒体参考基因组
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daniel B. Sloan;Zhiqiang Wu;Joel Sharbrough
  • 通讯作者:
    Joel Sharbrough
Radical Amino Acid Changes Persist Longer in Asexuals 4
无性动物中氨基酸的激进变化持续时间更长 4
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joel Sharbrough;Meagan Luse;J. Boore;J. M. Logsdon;M. Neiman
  • 通讯作者:
    M. Neiman
Phenotypic variation in mitochondrial function across New Zealand snail populations
新西兰蜗牛种群线粒体功能的表型变异
  • DOI:
    10.1101/230979
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Greimann;Samuel F. Ward;James D. Woodell;Samantha Hennessey;Michael R Kline;Jorge A Moreno;Madeline Peters;J. Cruise;K. Montooth;M. Neiman;Joel Sharbrough
  • 通讯作者:
    Joel Sharbrough

Joel Sharbrough的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Genomic Instability as A Driver of Stem Cell Exhaustion
基因组不稳定性是干细胞衰竭的驱动因素
  • 批准号:
    10722284
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
A genomic characterization of the response to sleep loss
睡眠不足反应的基因组特征
  • 批准号:
    10928421
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
Defining the universal genomic language of hallmarks in tumor development
定义肿瘤发展标志的通用基因组语言
  • 批准号:
    10681670
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
Integrative analysis to identify genomic biomarkers in HPV positive oral cancer
综合分析鉴定 HPV 阳性口腔癌的基因组生物标志物
  • 批准号:
    10666904
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
  • 批准号:
    10736507
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
Mapping protein signatures to single allele chromatin topologies at genomic resolution
在基因组分辨率下将蛋白质特征映射到单等位基因染色质拓扑
  • 批准号:
    10649096
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
Integrated morphological and transcriptomic single-cell profiling of patient-derived cells as a platform for genomic and translational medicine
患者来源细胞的综合形态学和转录组单细胞分析作为基因组和转化医学的平台
  • 批准号:
    10802704
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
Novel strategies for high-specific multiplexed imaging of genomic interactions by signal amplification
通过信号放大对基因组相互作用进行高特异性多重成像的新策略
  • 批准号:
    10314777
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
Characterizing the role of tumor suppressor phase separation and chromatin organization in maintaining genomic integrity
表征肿瘤抑制相分离和染色质组织在维持基因组完整性中的作用
  • 批准号:
    10723739
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
Using spatial, single-cell genomic recording to investigate age-associated clonal hematopoiesis
利用空间单细胞基因组记录研究与年龄相关的克隆造血作用
  • 批准号:
    10608900
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了