CAREER: Probing and Exploiting Short-range Order in Crystalline Materials for Fast Ion Transport
职业:探索和利用晶体材料中的短程有序以实现快速离子传输
基本信息
- 批准号:2145832
- 负责人:
- 金额:$ 67.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Non-Technical Summary: Fast ion conductors are major players in energy storage, a strategically critical area for the holy grail of vehicle electrification and the best solution to the intermittent and random nature of many renewable energy sources, such as solar and wind. Past research has heavily focused on ion conductors with perfect prototype structures. As a result, further materials discovery was limited to incremental improvement and a narrow range of chemistry. In this project, with support from the Solid State and Materials Chemistry program in the Division of Materials Research, the principle investigator investigates structurally-disordered ion conductors with compositional flexibility that can potentially alleviate the industry’s reliance on any single critical metal source which has broad societal impact. The project also integrates education and research to increase enrollment, diversity, and retention of STEM students, creating America’s future STEM workforce. In pursuit of these goals, the PI creates demonstration kits for college teaching and K-12 outreach, a crystal growth course with hands-on research-based activities, and a novel augmented reality experience for interactive crystallography pedagogy. The PI collaborates with the Utah STEM Action Center to reach students from backgrounds underrepresented in STEM and school districts historically underperforming in STEM and deliver them the kits and demonstrations. Technical Summary: The facile transport of ions in crystalline materials enables key functionality in various devices, such as batteries, membranes, and fuel cells. The structural characterization of these materials, however, presents an outstanding challenge. Their crystal structures often exhibit short-range order, whereas traditional diffraction-based techniques are only sensitive to long-range periodic features. As a result, past research either had to ignore it for lack of instrument sensitivity or avoided it completely for fear of complexity and unpredictability. This CAREER project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, overcomes these difficulties by performing state-of-the-art synchrotron and neutron scattering on judiciously selected ion conductors, to precisely characterize these structural subtleties in both the mobile ion and the framework sublattices. The project also systematically modifies the chemistry and synthesis variables and correlate these parameters with structural observations and property measurements to reveal previously overlooked structure-property relationships. These insights enable the design of disruptively new materials with fast ion transport and excellent economic sustainability. The PI also engages in a series of education and outreach activities by taking an approach centering on research-based, hands-on activities, to reinforce cognitive knowledge and retention and stimulate students’ interest in higher STEM education and careers. Specific efforts include: (1) outreach to middle and high schools with STEM activity kits; (2) expansion of the hands-on lab sessions in a crystal growth course; and (3) creation of an augmented reality app for interactive crystallography pedagogy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。非技术总结:快离子导体是储能领域的主要参与者,是汽车电气化圣杯的战略关键领域,也是许多可再生能源(如太阳能和风能)间歇性和随机性的最佳解决方案。过去的研究主要集中在具有完美原型结构的离子导体上。因此,进一步的材料发现仅限于渐进式改进和狭窄的化学范围。在该项目中,在材料研究部固态和材料化学项目的支持下,主要研究人员研究了具有组成灵活性的结构无序离子导体,这可能会减轻行业对任何具有广泛社会影响的单一关键金属来源的依赖。该项目还整合了教育和研究,以增加STEM学生的入学率,多样性和保留率,创造美国未来的STEM劳动力。为了实现这些目标,PI为大学教学和K-12推广创建了演示工具包,一个具有实践研究活动的晶体生长课程,以及一个用于交互式晶体学教学的新颖增强现实体验。PI与犹他州STEM行动中心合作,接触那些来自STEM代表性不足的背景的学生,以及在STEM方面表现不佳的学区,并向他们提供工具包和演示。技术总结:离子在晶体材料中的容易传输使得各种设备(例如电池、膜和燃料电池)具有关键功能。然而,这些材料的结构表征提出了一个突出的挑战。它们的晶体结构通常表现出短程有序,而传统的基于衍射的技术只对长程周期性特征敏感。因此,过去的研究要么因为缺乏仪器灵敏度而忽略它,要么因为害怕复杂性和不可预测性而完全避免它。该CAREER项目由材料研究部的固态和材料化学项目支持,通过对明智选择的离子导体进行最先进的同步加速器和中子散射来克服这些困难,以精确表征移动的离子和框架亚晶格中的这些结构微妙之处。该项目还系统地修改了化学和合成变量,并将这些参数与结构观察和性质测量相关联,以揭示以前被忽视的结构-性质关系。这些见解使设计具有快速离子传输和卓越经济可持续性的颠覆性新材料成为可能。PI还通过采取以研究为基础的实践活动为中心的方法,参与一系列教育和外展活动,以加强认知知识和保留,并激发学生对高等STEM教育和职业的兴趣。具体努力包括:(1)向初中和高中推广STEM活动包;(2)扩大晶体生长课程的动手实验室课程;(3)创建用于互动晶体学教学的增强现实应用程序。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响力审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reversible Electrochemical Lithium Cycling in a Vanadium(IV)- and Niobium(V)-Based Wadsley–Roth Phase
钒 (IV) 和铌 (V) 基 Wadsley-Roth 相中的可逆电化学锂循环
- DOI:10.1021/acs.chemmater.2c03465
- 发表时间:2023
- 期刊:
- 影响因子:8.6
- 作者:Lawrence, Erick A.;Davenport, Matthew A.;Devi, Reshma;Cai, Zijian;Avdeev, Maxim;Belnap, Jonathan R.;Liu, Jue;Alnaser, Husain;Ho, Alice;Sparks, Taylor D.
- 通讯作者:Sparks, Taylor D.
Floating zone crystal growth, structure, and properties of a cubic Li 5.5 La 3 Nb 1.5 Zr 0.5 O 12 garnet-type lithium-ion conductor
立方Li 5.5 La 3 Nb 1.5 Zr 0.5 O 12 石榴石型锂离子导体的浮区晶体生长、结构和性能
- DOI:10.1039/d3ta04606k
- 发表时间:2023
- 期刊:
- 影响因子:11.9
- 作者:Ramette, Caleb;Pressley, Lucas;Avdeev, Maxim;Lee, Minseong;Kushwaha, Satya;Krogstad, Matthew;Sarker, Suchismita;Cardon, Paul;Ruff, Jacob;Khan, Mojammel
- 通讯作者:Khan, Mojammel
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huiwen Ji其他文献
Synthesis and characterization of two crystallographic forms of Ag<sub>0.79</sub>VS<sub>2</sub>
- DOI:
10.1016/j.jssc.2013.03.038 - 发表时间:
2013-06-01 - 期刊:
- 影响因子:
- 作者:
Mazhar N. Ali;Huiwen Ji;Daigorou Hirai;M.K. Fuccillo;R.J. Cava - 通讯作者:
R.J. Cava
<math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0012.gif" overflow="scroll" class="math"><mi>β</mi><mi mathvariant="normal">-</mi><mi>HfCuGe</mi><mi mathvariant="normal">—</mi><mi mathvariant="normal">A</mi></math> new polymorph of HfCuGe with a novel structure type
- DOI:
10.1016/j.jssc.2012.11.001 - 发表时间:
2013-03-01 - 期刊:
- 影响因子:
- 作者:
Leslie M. Schoop;Jared M. Allred;Ni Ni;D. Hirai;Julia Krez;Michael Schwall;Huiwen Ji;Mazhar N. Ali;R.J. Cava - 通讯作者:
R.J. Cava
Crystal structure and elementary electronic properties of Bi-stabilized α-In<sub>2</sub>Se<sub>3</sub>
- DOI:
10.1016/j.materresbull.2013.03.002 - 发表时间:
2013-07-01 - 期刊:
- 影响因子:
- 作者:
Huiwen Ji;Anjan Reijnders;Tian Liang;L.M. Schoop;K.S. Burch;N.P. Ong;R.J. Cava - 通讯作者:
R.J. Cava
679/339.5 nm radiation generation of pr: YLF laser pumped by fiber coupled blue laser diode module
- DOI:
10.1007/s00340-024-08341-7 - 发表时间:
2024-10-29 - 期刊:
- 影响因子:2.000
- 作者:
Wei Dou;Shanshan Hou;Xinyue Wang;Fang Ma;Huiwen Ji;Quan Zheng - 通讯作者:
Quan Zheng
Huiwen Ji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Probing matter-antimatter asymmetry with the muon electric dipole moment
- 批准号:
- 批准年份:2020
- 资助金额:30 万元
- 项目类别:
Probing quark gluon plasma by heavy quarks in heavy-ion collisions
- 批准号:11805087
- 批准年份:2018
- 资助金额:30.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 67.91万 - 项目类别:
Standard Grant
CAREER: Probing structural dynamics and regulatory mechanisms of RNA-guided CRISPR-Cas12 endonucleases and their analogues
职业:探索 RNA 引导的 CRISPR-Cas12 核酸内切酶及其类似物的结构动力学和调控机制
- 批准号:
2339799 - 财政年份:2024
- 资助金额:
$ 67.91万 - 项目类别:
Continuing Grant
Probing ultralight bosons with black holes and gravitational waves
用黑洞和引力波探测超轻玻色子
- 批准号:
DE240100206 - 财政年份:2024
- 资助金额:
$ 67.91万 - 项目类别:
Discovery Early Career Researcher Award
Probing the origin and evolution of low-oxidation state iron and copper nanoparticles in the brain
探究大脑中低氧化态铁和铜纳米粒子的起源和演化
- 批准号:
EP/X031403/1 - 财政年份:2024
- 资助金额:
$ 67.91万 - 项目类别:
Research Grant
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
- 批准号:
EP/Y027906/1 - 财政年份:2024
- 资助金额:
$ 67.91万 - 项目类别:
Research Grant
Probing Electrochemical Interface in CO2 reduction by Operando Computation
通过操作计算探测二氧化碳还原中的电化学界面
- 批准号:
DE240100846 - 财政年份:2024
- 资助金额:
$ 67.91万 - 项目类别:
Discovery Early Career Researcher Award
Probing Solar Axions with X-ray Optics for BabyIAXO
使用 BabyIAXO 的 X 射线光学器件探测太阳轴子
- 批准号:
2309980 - 财政年份:2024
- 资助金额:
$ 67.91万 - 项目类别:
Standard Grant
CAREER: Probing Specificity and Competition in the Lipid Droplet Proteome
职业:探索脂滴蛋白质组的特异性和竞争
- 批准号:
2341008 - 财政年份:2024
- 资助金额:
$ 67.91万 - 项目类别:
Continuing Grant
Probing Molecular Quantum Materials by Advanced Spectroscopies
通过先进光谱探测分子量子材料
- 批准号:
2349345 - 财政年份:2024
- 资助金额:
$ 67.91万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412550 - 财政年份:2024
- 资助金额:
$ 67.91万 - 项目类别:
Standard Grant