CAREER: High-Speed Boundary Layer Transition on Realistic Non-Smooth Surfaces

职业:真实非光滑表面上的高速边界层过渡

基本信息

  • 批准号:
    2146100
  • 负责人:
  • 金额:
    $ 51.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). For the design of efficient high-speed vehicles, it is essential to accurately predict the flow field and its interaction with solid surfaces. In the presence of turbulent (non-orderly moving) flow, surface friction and heat transfer are significantly higher than for laminar (orderly moving) flow, leading to performance losses and potentially critical failure. Accurate laminar-to-turbulent transition prediction is a key challenge in fluid dynamics research as it depends on many parameters associated with the geometry, flow conditions, external disturbance environment and smoothness of the surface. At high speeds, exposure to hot, fast-moving flow can lead to severe surface degradation through ablation processes. Therefore, a thorough understanding of how these realistic non-smooth surfaces affect transition is essential for accurate flow predictions. This project addresses a definite gap in fundamental research knowledge by investigating the interaction of time-evolving (ablative) rough surfaces with high-speed transitional flows. This research can have a significant broader positive impact as it can, for example, enable more energy efficient engineering systems involving fluid flows, allow for more efficient space exploration, one day enable commercial hypersonic flight and other forms of high-speed transportation as well as provide rapid response capabilities essential for national security. The project will also encompass significant educational activities encouraging students to pursue careers in STEM disciplines, including computer-based learning experiences used in several outreach efforts with a focus on teaching computational skills.The scientific research objective is to obtain a fundamental understanding of how realistic non-smooth surfaces affect all stages of the laminar-to-turbulent transition process. This project goes well beyond the current state-of-the-art by including the interaction of transitional flows with realistic time evolving (ablative) surfaces. The first ever coupled fluid-ablation interaction simulations considering hypersonic boundary layer transition will be performed. These simulations will provide insight into the intricacies of the complex physical phenomena involved. A unique numerical approach capturing the wide range of temporal and spatial scales will be employed for these simulations and advanced analysis tools, such as modal and bi-orthogonal decomposition, will be used to dissect the complex physics and cultivate understanding of the different effects involving a wide parameter space. This research will yield unprecedented understanding essential for improving transition prediction capabilities and for providing the ability to critically assess the transition process for realistic high-speed flow environments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分根据2021年美国救援计划法案(公法117-2)资助。为了设计高效的高速飞行器,必须准确地预测流场及其与固体表面的相互作用。在湍流(非有序移动)的情况下,表面摩擦和热传递明显高于层流(有序移动),导致性能损失和潜在的严重故障。准确的层流到湍流转捩预测是流体动力学研究中的一个关键挑战,因为它取决于与几何形状、流动条件、外部扰动环境和表面光滑度相关的许多参数。在高速下,暴露于热的、快速移动的流可通过烧蚀过程导致严重的表面退化。因此,彻底了解这些现实的非光滑表面如何影响过渡是准确的流动预测的关键。本项目通过研究随时间变化的(烧蚀)粗糙表面与高速过渡流的相互作用,解决了基础研究知识中的一个明确空白。这项研究可以产生更广泛的积极影响,因为它可以实现涉及流体流动的更节能的工程系统,允许更有效的太空探索,有朝一日实现商业高超音速飞行和其他形式的高速运输,以及提供对国家安全至关重要的快速反应能力。该项目还将包括重要的教育活动,鼓励学生从事STEM学科的职业,包括在几个外展工作中使用的基于计算机的学习经验,重点是教授计算技能。科学研究的目标是从根本上了解现实的非光滑表面如何影响层流到湍流过渡过程的各个阶段。这个项目远远超出了目前的国家的最先进的,包括过渡流与现实的时间演变(烧蚀)表面的相互作用。首次进行了考虑高超音速边界层转捩的耦合流体烧蚀干扰模拟。这些模拟将提供对所涉及的复杂物理现象的复杂性的洞察。一个独特的数值方法捕捉广泛的时间和空间尺度将用于这些模拟和先进的分析工具,如模态和双正交分解,将被用来剖析复杂的物理和培养的理解,涉及广泛的参数空间的不同效果。这项研究将产生前所未有的理解,提高过渡预测能力和提供能力,批判性地评估现实的高速流环境的过渡过程至关重要。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of Injection Gas Composition on the Stability of a High-Enthalpy Flow over a Blunt Cone
  • DOI:
    10.2514/6.2024-1977
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Saikia
  • 通讯作者:
    B. Saikia
Finite-rate and equilibrium study of graphite ablation under arc-jet conditions
电弧喷射条件下石墨烧蚀的有限速率和平衡研究
  • DOI:
    10.1016/j.compfluid.2023.106069
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Zibitsker, Aleksander L.;McQuaid, Joel A.;Stern, Eric C.;Palmer, Grant E.;Libben, Benjamin J.;Brehm, Christoph;Martin, Alexandre
  • 通讯作者:
    Martin, Alexandre
Deviation from Equilibrium Thermochemistry and Aerodynamic Heating Assumptions in the Ablation Process of Camphor
樟脑烧蚀过程中平衡热化学和气动加热假设的偏差
Study of a Two-Dimensional Shape Change of Blunt-Body Geometries at Hypersonic Conditions Using Fully Coupled Simulation
利用全耦合仿真研究高超声速条件下钝体几何形状的二维形状变化
Effects of Transpiration Cooling on Hypersonic Boundary-Layer Receptivity and Stability for Blunt Cones
  • DOI:
    10.2514/6.2023-3673
  • 发表时间:
    2023-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Saikia;C. Brehm
  • 通讯作者:
    B. Saikia;C. Brehm
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christoph Brehm其他文献

CRT-727 Percutaneous Balloon Atrial Septostomy for Direct Left Heart Decompression in Patients on Extra Corporeal Membrane Oxygenation
  • DOI:
    10.1016/j.jcin.2014.01.146
  • 发表时间:
    2014-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Pradeep K. Yadav;Giselle A. Baquero;Mark Kozak;Christoph Brehm
  • 通讯作者:
    Christoph Brehm
Simulating the BOLT Hypersonic Vehicle using an Overset Near Body Cartesian Solver
使用重叠近体笛卡尔求解器模拟 BOLT 高超声速飞行器
  • DOI:
    10.2514/6.2024-2185
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. McQuaid;Christoph Brehm
  • 通讯作者:
    Christoph Brehm
High Enthalpy Effects on Hypersonic Boundary Layer Transition
高超声速边界层转变的高焓效应
  • DOI:
    10.2514/6.2024-0288
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    V. Wartemann;Alexander Wagner;H. Tanno;Sean D. Dungan;J. McQuaid;Christoph Brehm;Jean;Hélène Gaible;Xiaowen Wang;Ethan S. Beyak;Joseph Kuehl;Tony Liang;Sulav Kafle;Christian Mundt;Jan;Lukas Jakobs;Joseph S. Jewell
  • 通讯作者:
    Joseph S. Jewell
Acute Limb Ischemia in Patients on Veno-Arterial Extracorporeal Membrane Oxygenation (VA-ECMO) Support: A Ten-Year Single-Center Experience
  • DOI:
    10.1016/j.jvs.2021.06.380
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Besma Nejim;Rachael Snow;Marvin Chau;Maria Castello-Ramirez;Tanya Flohr;Christoph Brehm;Faisal Aziz
  • 通讯作者:
    Faisal Aziz
An Evaluation of the Immersed Boundary Method for Subsonic Wall-Modeled Large Eddy Simulations
亚音速壁面大涡模拟浸入边界法的评估
  • DOI:
    10.2514/6.2024-0300
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Ganju;Monal Patel;Christoph Brehm
  • 通讯作者:
    Christoph Brehm

Christoph Brehm的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于数据稀疏表示的实时G-SPEED磁共振成像技术研究
  • 批准号:
    61372024
  • 批准年份:
    2013
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

One-Way Navier-Stokes (OWNS) Approach for Linear and Nonlinear Instability and Transition in High-Speed Boundary Layers
用于解决高速边界层中线性和非线性不稳定性及转变的单向纳维斯托克斯 (OWNS) 方法
  • 批准号:
    532522-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
One-Way Navier-Stokes (OWNS) Approach for Linear and Nonlinear Instability and Transition in High-Speed Boundary Layers
用于解决高速边界层中线性和非线性不稳定性及转变的单向纳维斯托克斯 (OWNS) 方法
  • 批准号:
    532522-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Relaminarization and maximum drag reduction in turbulent boundary layer flow due to high speed injection of surfactant solution
由于表面活性剂溶液的高速注入,湍流边界层流的重新层化和最大减阻
  • 批准号:
    20H02065
  • 财政年份:
    2020
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
One-Way Navier-Stokes (OWNS) Approach for Linear and Nonlinear Instability and Transition in High-Speed Boundary Layers
用于解决高速边界层中线性和非线性不稳定性及转变的单向纳维斯托克斯 (OWNS) 方法
  • 批准号:
    532522-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
One-Way Navier-Stokes (OWNS) Approach for Linear and Nonlinear Instability and Transition in High-Speed Boundary Layers
用于解决高速边界层中线性和非线性不稳定性及转变的单向纳维斯托克斯 (OWNS) 方法
  • 批准号:
    532522-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Mechanical interactions between High-speed marine boundary layer flows and ocean waves
高速海洋边界层流与海浪之间的机械相互作用
  • 批准号:
    18H03791
  • 财政年份:
    2018
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Aircraft Turbulent Boundary Layer Induced Noise of Medium and High-Speed Flows
飞机湍流边界层引起的中高速流噪声
  • 批准号:
    512839-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 51.57万
  • 项目类别:
    University Undergraduate Student Research Awards
Aircraft Turbulent Boundary Layer Induced Noise of High-Speed Flows
飞机湍流边界层引起的高速流动噪声
  • 批准号:
    481874-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 51.57万
  • 项目类别:
    University Undergraduate Student Research Awards
MRI: Acquisition of High Speed Video Imaging System for Electromagnetic Shockwave Control and Shockwave-Boundary Layer Interaction Research at AAMU
MRI:获取高速视频成像系统,用于 AAMU 的电磁冲击波控制和冲击波-边界层相互作用研究
  • 批准号:
    1337227
  • 财政年份:
    2013
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Standard Grant
Development of large-size high-speed phase shifting interferometer to observe sound and to measure turbulent thermal boundary layer
研制大型高速相移干涉仪以观测声音并测量湍流热边界层
  • 批准号:
    23656142
  • 财政年份:
    2011
  • 资助金额:
    $ 51.57万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了