CAREER: Building interpretable models of neural population activity through view-invariant representation learning and alignment

职业:通过视图不变表示学习和对齐构建可解释的神经群体活动模型

基本信息

  • 批准号:
    2146072
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2027-09-30
  • 项目状态:
    未结题

项目摘要

What happens in the brain when we move our hand to touch a glass of water, listen to the sound of rustling leaves, or play a game of chess? In most of our experiences, perception and sensation are orchestrated through the activity of large-scale circuits of neurons distributed throughout the brain. While new advances in neural recording have expanded our ability to measure the activity of large populations of (hundreds or thousands of) neurons, parsing through neural recordings to "read out" intent or behavior is still an outstanding challenge. The goal of this CAREER proposal is to develop new machine learning methods for learning robust mappings between neural activity and complex behavior. With new approaches that can go from the brain to behavior, it will be possible to better understand neural computation, compare neural activity between individuals, and create dynamic models that capture the ever-changing nature of the brain.The project will be organized into three aims, each of which focuses on development of methods to tackle key challenges in building a mapping between the brain and behavior. In Aim 1, the project will develop new methods for learning representations from neural population activity, with a focus on building invariances through self-supervised and contrastive learning methods. In Aim 2, the project will focus on the problem of learning representations jointly across multiple neural recordings and using this technology to understand common factors and differences across individuals. In Aim 3, the project will develop approaches to extract dynamic latent factors that model the shift in representations over longer time scales and apply them to study the study of healthy aging and neurodegenerative disease. This project will develop machine learning frameworks and theory for learning robust representations from neural recordings and provide new ways to quantify changes in brain activity across individuals, over time, aging, or disease.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当我们用手碰一杯水,听树叶沙沙作响,或下一盘象棋时,大脑会发生什么?在我们的大多数经验中,感知和感觉是通过分布在大脑中的大规模神经元回路的活动来协调的。虽然神经记录的新进展扩大了我们测量大量(数百或数千)神经元活动的能力,但通过神经记录解析以“读出”意图或行为仍然是一个突出的挑战。本CAREER提案的目标是开发新的机器学习方法来学习神经活动和复杂行为之间的鲁棒映射。有了从大脑到行为的新方法,就有可能更好地理解神经计算,比较个体之间的神经活动,并创建捕捉大脑不断变化的本质的动态模型。该项目将分为三个目标,每个目标都侧重于开发方法,以解决构建大脑和行为之间映射的关键挑战。在目标1中,该项目将开发从神经群体活动中学习表征的新方法,重点是通过自监督和对比学习方法构建不变性。在目标2中,该项目将专注于跨多个神经记录共同学习表征的问题,并使用该技术来理解个体之间的共同因素和差异。在目标3中,该项目将开发提取动态潜在因素的方法,这些因素可以在更长的时间尺度上模拟表征的转变,并将其应用于健康衰老和神经退行性疾病的研究。该项目将开发机器学习框架和理论,用于从神经记录中学习稳健的表征,并提供新的方法来量化个体,随着时间,衰老或疾病的大脑活动变化。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Half-Hop: A graph upsampling approach for slowing down message passing
  • DOI:
    10.48550/arxiv.2308.09198
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mehdi Azabou;Venkataraman Ganesh;S. Thakoor;Chi-Heng Lin;Lakshmi Sathidevi;Ran Liu;M. Vaĺko;
  • 通讯作者:
    Mehdi Azabou;Venkataraman Ganesh;S. Thakoor;Chi-Heng Lin;Lakshmi Sathidevi;Ran Liu;M. Vaĺko;
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eva Dyer其他文献

An active learning framework for personalized deep brain stimulation
  • DOI:
    10.1016/j.brs.2023.03.016
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mohammad S.E. Sendi;Jeffrey Herron;Svjetlana Miocinovic;Eva Dyer;Helen Mayberg;Robert Gross;Vince Calhoun
  • 通讯作者:
    Vince Calhoun

Eva Dyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eva Dyer', 18)}}的其他基金

EAGER:Using Network Analysis And Representational Geometry To Learn Structure-Function Relationship In Neural Networks
EAGER:使用网络分析和表征几何来学习神经网络中的结构-功能关系
  • 批准号:
    2039741
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CRII: RI: Using Large-Scale Neuroanatomy Datasets to Quantify the Mesoscale Architecture of the Brain
CRII:RI:使用大规模神经解剖学数据集来量化大脑的中尺度结构
  • 批准号:
    1755871
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

基于支链淀粉building blocks构建优质BE突变酶定向修饰淀粉调控机制的研究
  • 批准号:
    31771933
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF Engines Development Award: Building an sustainable plastics innovation ecosystem in the Midwest (MN, IL)
NSF 引擎发展奖:在中西部(明尼苏达州、伊利诺伊州)建立可持续塑料创新生态系统
  • 批准号:
    2315247
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Cooperative Agreement
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
Cyber​​Corps 服务奖学金:培养具有研究意识的网络领导者
  • 批准号:
    2336409
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Building Synthetic Biofilm Consortia for Polyfluorinated Chemicals Biodegradation
建立多氟化学品生物降解合成生物膜联盟
  • 批准号:
    2343831
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
RII Track-1: Interface of Change: Building Collaborations to Assess Harvested and Farmed Marine Species Prioritized by Gulf of Alaska Communities Facing Environmental Shifts
RII Track-1:变革界面:建立合作来评估面临环境变化的阿拉斯加湾社区优先考虑的捕捞和养殖海洋物种
  • 批准号:
    2344553
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Cooperative Agreement
Building Credentialed Media Technology Pathways for Priority Populations from High School through Community Colleges to Industry (MTP3)
为从高中到社区大学再到工业界的优先人群建立认证媒体技术途径 (MTP3)
  • 批准号:
    2400610
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: CREST-PRP: Exploring the Impact of Heat-Waves and Nutrients on Bloom-Forming and Habitat-Building Seaweeds Along the South Florida Coast
博士后奖学金:CREST-PRP:探索热浪和营养物质对南佛罗里达海岸海藻形成和栖息地建设的影响
  • 批准号:
    2401066
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Conference: CRA-E Workshop: Supporting career building, student research experiences, and advancement of teaching track faculty
会议:CRA-E 研讨会:支持职业建设、学生研究经验和教学轨道教师的进步
  • 批准号:
    2421010
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Planning: FIRE-PLAN: Building Wildland Fire Science Capacity in Alaska Through The University of Alaska Fairbanks Rural Campuses
规划:FIRE-PLAN:通过阿拉斯加大学费尔班克斯乡村校区建设阿拉斯加荒地火灾科学能力
  • 批准号:
    2333423
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
  • 批准号:
    2315532
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了