CAREER: Foundations of Statistical Program Reasoning

职业:统计程序推理的基础

基本信息

  • 批准号:
    2146518
  • 负责人:
  • 金额:
    $ 64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2027-01-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Program analysis and verification systems are both challenging to design and expensive to operate, with a reputation for poor scalability, false warnings, and missed bugs. In addition, these program-reasoning tools interoperate poorly with the continuous and iterative nature of modern software engineering processes, and only have rudimentary ways of interacting with human engineers. The project develops techniques to extend the underlying deductive basis of these analyses---commonly expressed using declarative formalisms such as constrained Horn clauses (CHCs) or Datalog---with probabilistic modes of reasoning. These probabilistic models provide a mechanism to prioritize warnings, incorporate feedback from developers, and combine knowledge from multiple analysis tools. As such, the project's main impact is to significantly improve the accuracy and usability of program analysis technology.The project develops algorithms to automatically learn probabilistic models from analysis of implementations, and determine their accuracy using open-source code corpora such as GitHub and databases such as Common Vulnerabilities and Exposures (CVE). Next, it develops ranking techniques to optimize effective accuracy, time needed to discover bugs, and other programmer-specified relevance criteria. The project introduces new interfaces for users to interact with program analysis algorithms, indicate preferences, and provide feedback on ground truth. For the analysis user, the project builds new bug-finding tools that provide useful, actionable insight into their programs. For analysis designers, the project offers new ways to apply statistical techniques in program verification, and new opportunities to produce accurate and scalable program analysis systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分由2021年美国救援计划法案(公法117-2)资助。程序分析和验证系统的设计具有挑战性,操作成本高,可扩展性差,错误警告和遗漏错误。此外,这些程序推理工具与现代软件工程过程的连续性和迭代性的互操作性很差,并且只有与人类工程师交互的基本方式。该项目开发的技术,以扩展这些分析的基础演绎-通常使用声明形式主义,如约束霍恩条款(CHC)或Datasheet-与概率推理模式表示。这些概率模型提供了一种机制来区分警告的优先级,合并来自开发人员的反馈,并将来自多个分析工具的知识联合收割机结合起来。因此,该项目的主要影响是显著提高程序分析技术的准确性和可用性。该项目开发了算法,可以通过分析实现自动学习概率模型,并使用GitHub等开源代码语料库和Common Vulnerabilities and Exposures(CVE)等数据库来确定其准确性。接下来,它开发了排名技术,以优化有效的准确性,发现bug所需的时间,以及其他程序员指定的相关性标准。该项目引入了新的界面,供用户与程序分析算法进行交互,指示偏好,并提供关于地面实况的反馈。对于分析用户,该项目构建了新的缺陷查找工具,为他们的程序提供有用的、可操作的见解。对于分析设计人员来说,该项目提供了在项目验证中应用统计技术的新方法,以及产生准确和可扩展的项目分析系统的新机会。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning probabilistic models for static analysis alarms
学习静态分析警报的概率模型
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mukund Raghothaman其他文献

Data-Driven Template-Free Invariant Generation
数据驱动的无模板不变生成
  • DOI:
    10.48550/arxiv.2312.17527
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuan Xia;Jyotirmoy V. Deshmukh;Mukund Raghothaman;Srivatsan Ravi
  • 通讯作者:
    Srivatsan Ravi
Language to Specify Syntax-Guided Synthesis Problems
指定语法引导综合问题的语言
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mukund Raghothaman;Abhishek Udupa
  • 通讯作者:
    Abhishek Udupa
Nom Nom: Explanatory Function Names for Program Synthesizers
Nom Nom:程序合成器的解释性函数名称
Provenance-guided synthesis of Datalog programs
数据记录程序的来源引导综合
Regular Programming Over Data Streams
通过数据流进行常规编程
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mukund Raghothaman
  • 通讯作者:
    Mukund Raghothaman

Mukund Raghothaman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mukund Raghothaman', 18)}}的其他基金

FMitF: Track I: Synthesis of Quantitative Network Analytics: From Left-of-Launch to Right-of-Boom
FMITF:第一轨:定量网络分析的综合:从启动左侧到繁荣右侧
  • 批准号:
    2124431
  • 财政年份:
    2021
  • 资助金额:
    $ 64万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Synthesis of Logic Programs for Democratizing Program Analysis
合作研究:SHF:媒介:民主化程序分析的逻辑程序综合
  • 批准号:
    2107261
  • 财政年份:
    2021
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant

相似海外基金

Statistical Foundations for Detecting Anomalous Structure in Stream Settings (DASS)
检测流设置中的异常结构的统计基础 (DASS)
  • 批准号:
    EP/Z531327/1
  • 财政年份:
    2024
  • 资助金额:
    $ 64万
  • 项目类别:
    Research Grant
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
  • 批准号:
    2339829
  • 财政年份:
    2024
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247795
  • 财政年份:
    2023
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247794
  • 财政年份:
    2023
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312205
  • 财政年份:
    2023
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
  • 批准号:
    2308445
  • 财政年份:
    2023
  • 资助金额:
    $ 64万
  • 项目类别:
    Standard Grant
Conference: Statistical Foundations of Data Science and their Applications
会议:数据科学的统计基础及其应用
  • 批准号:
    2304646
  • 财政年份:
    2023
  • 资助金额:
    $ 64万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
  • 批准号:
    2308446
  • 财政年份:
    2023
  • 资助金额:
    $ 64万
  • 项目类别:
    Standard Grant
CAREER: Computer-Intensive Statistical Inference on High-Dimensional and Massive Data: From Theoretical Foundations to Practical Computations
职业:高维海量数据的计算机密集统计推断:从理论基础到实际计算
  • 批准号:
    2347760
  • 财政年份:
    2023
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312204
  • 财政年份:
    2023
  • 资助金额:
    $ 64万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了