Engineering and Evaluating the End-Group Assisted Electrodeposition of Conformal Polymer Electrolytes for Ultrathin-Film Batteries

超薄膜电池共形聚合物电解质端基辅助电沉积的工程设计和评估

基本信息

  • 批准号:
    2146597
  • 负责人:
  • 金额:
    $ 55.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Lithium-ion batteries are the primary power source for many devices from personal electronics to electric vehicles. While the energy stored in such batteries has steadily increased, a remaining limitation is their inability to safely charge in minutes or sustain a high-power output. The main bottleneck for this sluggishness is the slow movement of the lithium ions across the battery, which is mediated by either a liquid or polymeric electrolyte. Bringing the positive and negative electrodes much closer to each other would dramatically increase the speed at which batteries can operate. However, to avoid short circuits between these electrodes, ultra-thin solid electrolytes are needed that can be fabricated at extremely small scales in a uniform fashion without defects. This research project aims to address this technological need and engineering knowledge gap by developing polymer structures and manufacturing methodologies that enable the uniform fabrication of ultrathin polymer electrolytes capable of fast ion movement while maintaining electronic insulation and safety. Specifically, this research explores electrodeposition as an intrinsically surface-confined process for the uniform coating of complex electrode architectures with polymer electrolytes. To evaluate these ultrathin polymer films on battery-relevant scales, this research program further develops high-throughput multi-scale assays that use light and color to rapidly measure the electronic and ionic properties of the polymeric films. Additionally, this grant will introduce nanomanufacturing research projects in microbatteries to an undergraduate summer research program at BU, combining the traditionally disconnected fields of nanofabrication and energy storage. This research will also include the development of a new lab on ion-diffusion in solid materials for an undergraduate Materials Science course.This project addresses fundamental understanding of new manufacturing processes to enable interdigitated thin-film batteries with both high energy density and high-power density. The project addresses the lack of synthesis and processing methods of ultrathin, conformal, and defect-free polymer electrolytes on three-dimensional (3-D) electrode architectures. To overcome this barrier, this research program seeks to establish a fundamental understanding of the electrodeposition mechanism of polymer electrolytes with electrochemically crosslinkable end-groups. The rationale of this method is to decouple the capability for self-limiting electrodeposition, governed by the electrochemically reactive end-group, from film properties such as ionic conductivity that are determined by the film composition and molecular architecture. First, a systematic study will be conducted on the oxidative electrodeposition of poly(ethylene oxide) with phenolic end-groups on planar and three-dimensional porous electrodes to reveal the impact of the electrochemical conditions, as well as the molecular architecture of the polymer and the phenolic end-group, on the film growth and properties. These tasks will test the hypothesis that successful self-limiting electrodeposition of electronically insulating polymers requires a fast crosslinking rate and concurrent decrease of solubility upon end-group oxidation. Thus, this research will yield multiscale molecular design rules and processing windows that result in the conformal electrodeposition of polymeric electrolytes, creating foundational knowledge needed to overcome an engineering challenge for interdigitated thin-film batteries, as well as other functional polymer coatings. In a second track of the research program, the analytical challenge of the multi-dimensional parameter space posed by the interplay between solution composition, deposition conditions, and resulting film properties will be addressed by developing high-throughput optical screening methods to spatially resolve the key metrics of coverage, electronic resistivity, and ionic conductivity at submicron resolution over battery-relevant areas. These techniques will establish foundational structure-processing-property relationships for self-limiting polymer electrolyte electrodeposition from the molecular to the device level, and their comprehensive evaluation will build the basis of a new suite of multiscale electrochemical analysis tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
锂离子电池是从个人电子产品到电动汽车等许多设备的主要电源。虽然此类电池中存储的能量稳步增加,但仍存在一个限制,即它们无法在几分钟内安全充电或维持高功率输出。这种缓慢的主要瓶颈是锂离子在电池中的缓慢移动,这是由液体或聚合物电解质介导的。使正极和负极彼此更靠近将大大提高电池的运行速度。然而,为了避免这些电极之间的短路,需要能够以极小尺寸以均匀且无缺陷的方式制造的超薄固体电解质。该研究项目旨在通过开发聚合物结构和制造方法来解决这一技术需求和工程知识差距,从而能够均匀制造能够快速离子运动的超薄聚合物电解质,同时保持电子绝缘和安全性。具体来说,这项研究探索了电沉积作为一种本质上的表面限制过程,用于用聚合物电解质均匀涂覆复杂的电极结构。为了在电池相关尺度上评估这些超薄聚合物薄膜,该研究项目进一步开发了高通量多尺度测定,利用光和颜色来快速测量聚合物薄膜的电子和离子特性。此外,这笔赠款还将在波士顿大学的本科生暑期研究项目中引入微电池纳米制造研究项目,将传统上互不相关的纳米制造和能源存储领域结合起来。该研究还将包括为本科材料科学课程开发一个关于固体材料中离子扩散的新实验室。该项目旨在解决对新制造工艺的基本理解,以实现具有高能量密度和高功率密度的叉指型薄膜电池。该项目解决了三维 (3-D) 电极结构上超薄、保形和无缺陷聚合物电解质合成和加工方法的缺乏。为了克服这一障碍,该研究项目旨在建立对具有电化学可交联端基的聚合物电解质的电沉积机制的基本理解。该方法的基本原理是将由电化学反应性端基控制的自限性电沉积能力与由膜组成和分子结构决定的离子电导率等膜特性分离。首先,对具有酚端基的聚环氧乙烷在平面和三维多孔电极上的氧化电沉积进行系统研究,以揭示电化学条件以及聚合物和酚端基的分子结构对薄膜生长和性能的影响。这些任务将测试以下假设:电子绝缘聚合物的成功自限性电沉积需要快速交联速率,并且端基氧化时溶解度同时降低。因此,这项研究将产生多尺度分子设计规则和加工窗口,从而实现聚合物电解质的保形电沉积,创造克服叉指薄膜电池以及其他功能聚合物涂层的工程挑战所需的基础知识。在该研究计划的第二个轨道中,将通过开发高通量光学筛选方法来解决由溶液成分、沉积条件和所得薄膜特性之间的相互作用所带来的多维参数空间的分析挑战,以在空间上解析电池相关区域的亚微米分辨率的覆盖率、电阻率和离子电导率的关键指标。这些技术将为自限性聚合物电解质电沉积从分子到器件水平建立基础的结构-加工-性能关系,其综合评估将为一套新的多尺度电化学分析工具奠定基础。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conformal electrodeposition of ultrathin polymeric films with tunable properties from dual-functional monomers
双功能单体的性能可调的超薄聚合物薄膜的保形电沉积
  • DOI:
    10.1039/d2me00246a
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Wang, Wenlu;Zheng, Zhaoyi;Resing, Anton B.;Brown, Keith A.;Werner, Jörg G.
  • 通讯作者:
    Werner, Jörg G.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joerg Werner其他文献

Joerg Werner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Evaluating the mechanism by which the DYNLL1-MRE11 complex regulates DNA end resection and genome stability.
评估 DYNLL1-MRE11 复合物调节 DNA 末端切除和基因组稳定性的机制。
  • 批准号:
    10606076
  • 财政年份:
    2023
  • 资助金额:
    $ 55.13万
  • 项目类别:
Evaluating the role of telehealth in patients with end stage kidney disease (ESKD)
评估远程医疗对终末期肾病 (ESKD) 患者的作用
  • 批准号:
    10447360
  • 财政年份:
    2022
  • 资助金额:
    $ 55.13万
  • 项目类别:
Evaluating the biogeochemistry of oil sands tailings in end pit lakes
评价末坑湖油砂尾矿的生物地球化学
  • 批准号:
    RGPIN-2022-03422
  • 财政年份:
    2022
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Coring Seymour Island (CSI) Antarctica: Evaluating Causes and Effects of the End Cretaceous Mass Extinction
合作研究:南极洲西摩岛取芯(CSI):评估白垩纪末期大规模灭绝的原因和影响
  • 批准号:
    2025724
  • 财政年份:
    2022
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Standard Grant
Collaborative Research: Coring Seymour Island (CSI) Antarctica: Evaluating Causes and Effects of the End Cretaceous Mass Extinction
合作研究:南极洲西摩岛取芯(CSI):评估白垩纪末期大规模灭绝的原因和影响
  • 批准号:
    2020728
  • 财政年份:
    2022
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Standard Grant
Evaluating the long-term behavior and viability of end pit lakes as a tailings management practice and reclamation strategy
评估末坑湖的长期行为和可行性,作为尾矿管理实践和复垦策略
  • 批准号:
    555683-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Collaborative Research: Coring Seymour Island (CSI) Antarctica: Evaluating Causes and Effects of the End Cretaceous Mass Extinction
合作研究:南极洲西摩岛取芯(CSI):评估白垩纪末期大规模灭绝的原因和影响
  • 批准号:
    2026648
  • 财政年份:
    2022
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Standard Grant
Evaluating the long-term behavior and viability of end pit lakes as a tailings management practice and reclamation strategy
评估末坑湖的长期行为和可行性,作为尾矿管理实践和复垦策略
  • 批准号:
    555683-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Collaborative Research: Evaluating Climate Change and Kill Mechanisms Associated with the End-Cretaceous Mass Extinction: A Model-Data Comparison Approach
合作研究:评估与白垩纪末大规模灭绝相关的气候变化和杀灭机制:模型数据比较方法
  • 批准号:
    2149890
  • 财政年份:
    2021
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Standard Grant
Evaluating palliative and end-of-life care for Canadians living with schizophrenia
评估加拿大精神分裂症患者的姑息治疗和临终关怀
  • 批准号:
    452711
  • 财政年份:
    2021
  • 资助金额:
    $ 55.13万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了