GOALI/Collaborative Research: Understanding Multiscale Mechanics of Cyclic Bending under Tension to Improve Elongation-to-Fracture of Hexagonal Metals
GOALI/合作研究:了解张力下循环弯曲的多尺度力学,以提高六方金属的断裂伸长率
基本信息
- 批准号:2147126
- 负责人:
- 金额:$ 31.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
At the core of various strategies to reduce consumption of fossil fuels in the transportation industry is the goal to reduce structural weight, generally termed ‘lightweighting’. Certain metals, such as titanium and magnesium, have crystal structures known as hexagonal closed-packed (HCP), which contribute to superior strength-to-weight ratios. However, HCP metals often do not have the required ductility to form them into the desired shapes at room temperature. Instead of heating the material, with the accompanying expense, this Grant Opportunities for Academic Liaison with Industry (GOALI) research project will implement, characterize, and model a novel incremental forming process called ‘continuous bending under tension’ (CBT). The goal of the project is to double the formability of HCP metals at room temperature. By working with GOALI partner Boeing, the team will solve forming problems that are of immediate value to industry while enabling the lightweighting of aerospace structures. Furthermore, the modeling and materials characterization tools will be encapsulated in open-source software for free access to the entire scientific community. The students involved in the research will gain knowledge and understanding of industrial challenges through internship opportunities. An essential part of the project will be the instigation of an outreach program called Capstone Connect. An online forum will be created specifically for senior high-school students to connect with academic and industrial specialists as they tackle their final year Capstone projects. Not only will students gain deeper insights into engineering design projects, but the interactions will enlighten them concerning future STEM careers. While the ability to increase elongation-to-failure (ETF) in steels, for example, via CBT has been demonstrated, application to HCP metals has been limited. Furthermore, a deeper understanding of the mechanics behind the improved ductility is required to both optimize CBT process conditions and to transfer the underlying ideas into practical forming operations. This project will utilize high resolution digital image correlation (HRDIC) and high-resolution electron backscatter diffraction (HREBSD) to observe local slip activity, strain gradients, dislocation rearrangement, substructure development and associated back stresses that play a role in the remarkable increase in ETF during CBT. The experimental campaign will serve to inform and validate a novel non-local crystal plasticity finite element (CPFE) model at the critical mechanism length-scale, enabling understanding of mechanics in CBT to improve ETF of HCP metals. This combined experimental and modeling effort will provide unprecedented insights into CBT, and the practical success of the project will be demonstrated via the forming of a leading-edge titanium component with Boeing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
减少运输行业化石燃料消费的各种策略的核心是减少结构重量的目标,通常称为“轻量级”。某些金属(例如钛和镁)具有称为六角形封闭式包装(HCP)的晶体结构,这有助于优势强度与重量比。但是,HCP金属通常没有所需的延展性将它们在室温下形成所需的形状。该学术联络人与行业联络(Goali)研究项目的赠款机会无需加热材料,而不是加热材料,将实施,表征和建模一种新型的增量成型过程,称为“张力下连续弯曲”(CBT)。该项目的目的是使HCP金属在室温下的形成性加倍。通过与Goali合作伙伴波音公司合作,该团队将解决对行业具有直接价值的问题,同时实现航空航天结构的轻巧。此外,建模和材料表征工具将封装在开源软件中,以免费访问整个科学界。参与研究的学生将通过实习机会获得对工业挑战的知识和理解。该项目的重要组成部分将是一个名为Capstone Connect的外展计划的煽动。在线论坛将专门为高中生的高中生与学术和工业专家建立联系,以解决他们的最后一年的顶峰项目。学生不仅会对工程设计项目获得更深入的见解,而且互动会启发他们与未来的STEM职业有关。例如,尽管已经证明了通过CBT增加钢中伸长到失败(ETF)的能力,但在HCP金属上的应用仍受到限制。此外,需要对改进的延展性背后的机制有更深入的了解,以优化CBT过程条件并将基础思想转移到实际的形成操作中。该项目将利用高分辨率的数字图像相关性(HRDIC)和高分辨率电子反向散射衍射(HREBSD)来观察局部滑动活性,应变梯度,脱位重排,子结构的发展以及相关的背应力,在CBT期间ETF的显着增加中起着显着增加的作用。实验运动将有助于在关键机理长度尺度上为新型的非本地晶体可塑性有限元(CPFE)模型提供信息,从而使对CBT机制的理解能够改善HCP金属的ETF。这项结合的实验和建模工作将为CBT提供前所未有的见解,该项目的实际成功将通过与波音公司形成领先的钛合金组成。这一奖项反映了NSF的法定任务,并通过使用该基金会的知识分子优点和广泛影响来评估NSF的法定任务,并被认为是诚实的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Fullwood其他文献
Multiscale characterization of dislocation development during cyclic bending under tension in commercially pure titanium
- DOI:
10.1016/j.jmrt.2024.08.012 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
Nathan Miller;Nicholas Pitkin;Talukder Musfika Tasnim Oishi;Desmond Mensah;Marko Knezevic;Michael Miles;David Fullwood - 通讯作者:
David Fullwood
David Fullwood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Fullwood', 18)}}的其他基金
International Conference on Textures of Materials (ICOTOM) 2017; St. George, Utah; November 5-10, 2017
国际材料纹理会议(ICOTOM)2017;
- 批准号:
1745707 - 财政年份:2017
- 资助金额:
$ 31.47万 - 项目类别:
Standard Grant
GOALI: Deformation Microscopy of Retained Austenite Transformation in TRIP Steels
GOALI:TRIP 钢中残余奥氏体转变的变形显微镜
- 批准号:
1507095 - 财政年份:2015
- 资助金额:
$ 31.47万 - 项目类别:
Continuing Grant
Microstructural Foundations of Magnesium Performance: A Data Mining Approach to High-throughput Electron Microscopy
镁性能的微观结构基础:高通量电子显微镜的数据挖掘方法
- 批准号:
1404771 - 财政年份:2014
- 资助金额:
$ 31.47万 - 项目类别:
Standard Grant
Piezoresistive Nano-composite Sensors for Wide-range Strain: Applications in Biological Soft Tissue
适用于宽范围应变的压阻纳米复合传感器:在生物软组织中的应用
- 批准号:
1235365 - 财政年份:2012
- 资助金额:
$ 31.47万 - 项目类别:
Standard Grant
GOALI: Defect Detection Microscopy: Microstructure Design for Formability of Wrought Magnesium Alloys
目标:缺陷检测显微镜:变形镁合金成形性的微观结构设计
- 批准号:
0928923 - 财政年份:2009
- 资助金额:
$ 31.47万 - 项目类别:
Standard Grant
相似国自然基金
开放人机协作场景中的未知目标识别和人体运动预测方法研究
- 批准号:62203348
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
开放人机协作场景中的未知目标识别和人体运动预测方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向未知目标协作搬运的黏附型空中作业机器人动力学机理与协调控制研究
- 批准号:52202452
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向变工况人机协作的非朗伯表面目标视觉定位研究
- 批准号:52105525
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
面向变工况人机协作的非朗伯表面目标视觉定位研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: GOALI: Bio-inspired bistable energy harvesting for fish telemetry tags
合作研究:GOALI:用于鱼类遥测标签的仿生双稳态能量收集
- 批准号:
2245117 - 财政年份:2022
- 资助金额:
$ 31.47万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:
2129825 - 财政年份:2022
- 资助金额:
$ 31.47万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Instabilities and Local Strains in Engineered Cartilage Scaffold
GOALI/合作研究:工程软骨支架的不稳定性和局部应变
- 批准号:
2129776 - 财政年份:2022
- 资助金额:
$ 31.47万 - 项目类别:
Standard Grant
DMREF: Collaborative Research: GOALI: Accelerating Discovery of High Entropy Silicates for Extreme Environments
DMREF:合作研究:GOALI:加速极端环境中高熵硅酸盐的发现
- 批准号:
2219788 - 财政年份:2022
- 资助金额:
$ 31.47万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Control-Oriented Modeling and Predictive Control of High Efficiency Low-emission Natural Gas Engines
GOALI/协作研究:高效低排放天然气发动机的面向控制的建模和预测控制
- 批准号:
2302217 - 财政年份:2022
- 资助金额:
$ 31.47万 - 项目类别:
Standard Grant