Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality

协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性

基本信息

  • 批准号:
    2147546
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Emerging data science applications require efficient extraction of actionable insights from large and messy datasets. The number of relevant features often overwhelms the volume of data that is available, which dramatically complicates the statistical inference tasks and subsequent decision making. In the existing statistical literature, most of theory aims at understanding the average or global behavior of a statistical estimator in high dimensions. In many applications, however, it is often the case that the goal is not to explore the global behavior of a parameter estimator, but rather to perform inference and reasoning on its local, yet important, operational properties. The techniques and methods developed in the project will further advance the interplay between a broad range of areas including high-dimensional statistics, harmonic analysis, statistical physics, optimization, complex analysis, and statistical machine learning. The project provides research training opportunities for graduate students.This project pursues fine-grained inferential procedures and theory, aimed at enlarging the uncertainty assessment toolbox for various low-complexity models in high dimensions. Focusing on a few stylized problems, this research program consists of four major thrusts: (1) construct optimal confidence intervals for linear functionals of eigenvectors in low-rank matrix estimation; (2) design fine-grained hypothesis testing procedures for sparse regression under general designs; (3) develop entry-wise inference schemes for principal component analysis with missing data; and (4) conduct reliable and adaptive statistical eigen-analysis under minimal eigen-gaps. Emphasis is placed on algorithms that are model-agnostic and fully adaptive to data heteroscedasticity. Addressing these issues calls for the development of new statistical theory that enables reliable inference for a broad class of local properties underlying the unknown parameters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新兴的数据科学应用需要从庞大而混乱的数据集中有效地提取可操作的见解。相关特征的数量通常会超过可用的数据量,这会使统计推断任务和随后的决策变得非常复杂。在现有的统计文献中,大多数理论的目的是理解高维统计估计量的平均或全局行为。然而,在许多应用中,通常情况下,目标不是探索参数估计器的全局行为,而是对其局部但重要的操作属性进行推断和推理。 该项目中开发的技术和方法将进一步促进包括高维统计、调和分析、统计物理、优化、复分析和统计机器学习在内的广泛领域之间的相互作用。该项目为研究生提供了研究培训机会。该项目追求细粒度的推理程序和理论,旨在扩大各种高维低复杂度模型的不确定性评估工具箱。本研究主要围绕以下几个典型问题展开:(1)构造低秩矩阵估计中特征向量线性泛函的最优置信区间;(2)设计一般设计下稀疏回归的细粒度假设检验方法;(3)发展缺失数据下主成分分析的逐项推断方法;(4)在最小特征间隙下进行可靠的自适应统计特征分析。重点放在模型不可知和完全适应数据异方差的算法上。解决这些问题需要发展新的统计理论,从而能够可靠地推断出未知参数下的广泛的局部属性。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Debiasing Evaluations That are Biased by Evaluations
  • DOI:
    10.1609/aaai.v35i11.17214
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jingyan Wang;Ivan Stelmakh;Yuting Wei
  • 通讯作者:
    Jingyan Wang;Ivan Stelmakh;Yuting Wei
Tackling Small Eigen-Gaps: Fine-Grained Eigenvector Estimation and Inference Under Heteroscedastic Noise
Derandomizing Knockoffs
Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and Variance Reduction
  • DOI:
    10.1109/tit.2021.3120096
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Gen Li;Yuting Wei;Yuejie Chi;Yuantao Gu;Yuxin Chen
  • 通讯作者:
    Gen Li;Yuting Wei;Yuejie Chi;Yuantao Gu;Yuxin Chen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuting Wei其他文献

Improved design method for line gear pair based on screw theory
基于螺旋理论的线齿轮副改进设计方法
Advances in chondroitinase delivery for spinal cord repair.
软骨素酶递送用于脊髓修复的进展。
  • DOI:
    10.31083/j.jin2104118
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Yuting Wei;Melissa R. Andrews
  • 通讯作者:
    Melissa R. Andrews
From Gauss to Kolmogorov: Localized Measures of Complexity for Ellipses
从高斯到柯尔莫哥洛夫:椭圆复杂性的局部度量
The promoting effects of pyriproxyfen on autophagy and apoptosis in silk glands of non-target insect silkworm, emBombyx mori/em
吡丙醚对非靶标昆虫家蚕丝腺自噬和凋亡的促进作用
  • DOI:
    10.1016/j.pestbp.2023.105586
  • 发表时间:
    2023-11-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Guoli Li;Yizhe Li;Chunhui He;Yuting Wei;Kunpei Cai;Qingyu Lu;Xuebin Liu;Yizhou Zhu;Kaizun Xu
  • 通讯作者:
    Kaizun Xu
Measurement of the half-life of 95mTc and the 96Ru (n, x) 95mTc reaction cross-section induced by D–T neutron with covariance analysis
  • DOI:
    10.1140/epja/s10050-022-00879-4
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
  • 作者:
    Yuting Wei;Changlin Lan;Yujie Ge;Xianlin Yang;Liyang Jiang;Yangbo Nie;Xiaojun Li;Jiahao Wang;Gong Jiang;Xichao Ruan;Xiaolong Huang;Xiaodong Pan
  • 通讯作者:
    Xiaodong Pan

Yuting Wei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuting Wei', 18)}}的其他基金

CAREER: Statistical Learning from a Modern Perspective: Over-parameterization, Regularization, and Generalization
职业:现代视角下的统计学习:过度参数化、正则化和泛化
  • 批准号:
    2143215
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Fine-Grained Statistical Inference in High Dimension: Actionable Information, Bias Reduction, and Optimality
协作研究:高维细粒度统计推断:可操作信息、减少偏差和最优性
  • 批准号:
    2015447
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
  • 批准号:
    2348589
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2311878
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Efficacy and Durability of Microbially Induced Desaturation to Mitigate Liquefaction in Fine-grained Soils
合作研究:微生物诱导去饱和缓解细粒土壤液化的功效和持久性
  • 批准号:
    2242227
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2311875
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2311876
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2311877
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Efficacy and Durability of Microbially Induced Desaturation to Mitigate Liquefaction in Fine-grained Soils
合作研究:微生物诱导去饱和缓解细粒土壤液化的功效和持久性
  • 批准号:
    2242228
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2344717
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
  • 批准号:
    2232481
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
  • 批准号:
    2232482
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了