RINGS: Wideband NextG Tb/s mm-Wave Communication and Networking
RINGS:宽带 NextG Tb/s 毫米波通信和网络
基本信息
- 批准号:2148021
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The proposed sixth generation (6G) of wireless connectivity may involve much higher frequencies and bandwidths than current 5G systems, operating at approximately ten times higher frequency and offering up to ten times higher bandwidth, which will enable increased communication speed, sorely needed by the growing computational complexity of artificial intelligence and machine learning networks. But operating at higher frequencies has many shortcomings, namely higher loss in the channel, and more opportunity for blockages and other impairments to the connection. Additionally, the extremely high frequency of the data modulation requires novel signal processing techniques due to the infeasibility and energy expense of digitizing signals at such high speeds. To overcome these limits, a proposed analog approach that divide and conquer the frequency bands to save power and to make the systems feasible for mobile applications will be pursued. Taking advantage of the fact that transmission is accomplished with a large array of antennas, rather than a single high-power transmitter, can lead to energy savings and interference reduction by dividing the transmissions to various antennas to cause less inter-user interference. Finally, the resilience of such communication systems can be improved by incorporating more dense networks, which can form so-called mesh networks, which allows multiple paths from source to destination, which is needed when one path is lost due to blockages or other impairments. Such mesh networks also potentially increase interference and noise in the network, the directional nature of the transmissions can be utilized to realize a hierarchical mesh system. To test these ideas, a mm-wave testbed will be upgraded to support these experiments.The proposed goal is to increase the resilience of mm-wave networks both at the circuit and system level for 6G/NextG networks. At the circuit level, high throughput can be achieved by utilizing multiple carriers and efficient architectures for circuit building blocks that can simultaneously modulate/demodulate a large swath of bandwidth over an aggregation of non-contiguous sub-bands, similar to OFDM and OFDM-A, but using mixed-signal and analog techniques to reduce requirements on ADCs, DACs, and DSP. The main innovations are in increasing the bandwidth in the circuitry and exploiting system level innovations at the circuit architecture level to improve performance metrics, in particular noise, impact of phase noise, quantization noise, and output power and efficiency. The techniques proposed can help alleviate path loss, signal blockage, and beam tracking with minimal energy consumption. The benefits will be most pronounced when building large-scale NextG MIMO beamforming systems. Our systems research vector focuses on building robust and rapidly adaptable NextG networks by utilization of spatial mesh networking. By utilizing more degrees of freedom, in particular a wider channel bandwidth, and multiple carriers, the network can be further optimized for reliability and resilience. Frequency dependent beamforming, frequency selective fading, and many other channel impairments can be handled more easily in the frequency domain. However, OFDM modulation of a 30 GHz wide-band channel is not practical, instead mixed-signal techniques that can garner most of the benefits of a fully digital solution will be explored. Interference aware array transmitters will minimize inter-user interference by exploiting redundancies in the array. The proposed ideas will be tested both with integrated circuit prototypes and by demonstration using an upgraded mm-wave (E-band) MIMO testbed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拟议的第六代(6 G)无线连接可能涉及比当前5G系统高得多的频率和带宽,以大约十倍的频率运行并提供高达十倍的带宽,这将实现提高的通信速度,这是人工智能和机器学习网络日益增长的计算复杂性所迫切需要的。但是在较高频率下操作具有许多缺点,即信道中的较高损耗,以及对连接的阻塞和其他损害的更多机会。此外,由于在如此高的速度下数字化信号的不可行性和能量消耗,数据调制的极高频率需要新颖的信号处理技术。为了克服这些限制,将追求一种建议的模拟方法,该方法划分和征服频带以节省功率并使系统对于移动的应用是可行的。利用大天线阵列而不是单个高功率发射机来完成传输的事实,可以通过将传输划分到各个天线以引起更少的用户间干扰来导致能量节省和干扰减少。最后,可以通过合并更密集的网络来提高这种通信系统的弹性,所述更密集的网络可以形成所谓的网状网络,所述网状网络允许从源到目的地的多条路径,这在一条路径由于阻塞或其他损害而丢失时是需要的。这种网状网络还潜在地增加了网络中的干扰和噪声,传输的定向性质可以用于实现分层网状系统。为了测试这些想法,将升级一个毫米波测试平台来支持这些实验。拟议的目标是在6 G/NextG网络的电路和系统层面上提高毫米波网络的弹性。在电路级,可以通过利用多个载波和用于电路构建块的高效架构来实现高吞吐量,该电路构建块可以在非连续子带的聚合上同时调制/解调大带宽带,类似于OFDM和OFDM-A,但是使用混合信号和模拟技术来降低对ADC、DAC和DSP的要求。主要的创新在于增加电路的带宽,并在电路架构级别利用系统级创新来改善性能指标,特别是噪声、相位噪声的影响、量化噪声以及输出功率和效率。所提出的技术可以帮助减轻路径损耗,信号阻塞,和波束跟踪以最小的能量消耗。在构建大规模NextG MIMO波束成形系统时,这些优势将最为明显。我们的系统研究重点是通过利用空间网状网络构建强大且快速适应的NextG网络。通过利用更多的自由度,特别是更宽的信道带宽和多个载波,可以进一步优化网络的可靠性和弹性。频率相关波束成形、频率选择性衰落和许多其他信道损伤可以在频域中更容易地处理。然而,30 GHz宽带信道的OFDM调制并不实用,相反,将探索可以获得全数字解决方案的大部分好处的混合信号技术。干扰感知阵列发射机将通过利用阵列中的冗余来最小化用户间干扰。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ali Niknejad其他文献
On gate leakage current partition for MOSFET compact model
- DOI:
10.1016/j.sse.2006.09.016 - 发表时间:
2006-11-01 - 期刊:
- 影响因子:
- 作者:
Jayson Hu;Xuemei Xi;Ali Niknejad;Chenming Hu - 通讯作者:
Chenming Hu
Ali Niknejad的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ali Niknejad', 18)}}的其他基金
NSF-SNSF: ULTRA: Ubiquitous Large InTelligent ArRAys
NSF-SNSF:ULTRA:无处不在的大型智能阵列
- 批准号:
2403511 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
ACED Fab: 240-GHz Energy-Efficient CMOS MIMO Radar
ACED Fab:240GHz 节能 CMOS MIMO 雷达
- 批准号:
2314969 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
SWIFT: Interference Mitigation using Spatial and Frequency Nulling for Wideband mm-Wave Transceivers
SWIFT:使用宽带毫米波收发器的空间和频率归零来减轻干扰
- 批准号:
2128558 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
A Multimodal CMOS Platform for Electromagnetic-Based Tissue Treatment and Dynamic Imaging Using Terahertz Spectroscopy
使用太赫兹光谱进行基于电磁的组织治疗和动态成像的多模态 CMOS 平台
- 批准号:
1916743 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
An Interferometric CMOS DC-Terahertz Lab on a Chip Biosensor
干涉测量 CMOS DC-太赫兹芯片生物传感器实验室
- 批准号:
1608958 - 财政年份:2016
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: EARS: Broadband Mobile Wireless Access Using mm-Waves Bands Beyond 100 GHz
合作研究:EARS:使用超过 100 GHz 的毫米波频段的宽带移动无线接入
- 批准号:
1547440 - 财政年份:2015
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Wireless Chip-to-Chip Communication: Terahertz Short Range
无线芯片间通信:太赫兹短程
- 批准号:
1201755 - 财政年份:2012
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Exploration of THz CMOS for Imaging Applications
太赫兹 CMOS 成像应用探索
- 批准号:
0702037 - 财政年份:2007
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
相似海外基金
All Analogue Full-duplex Dual-receiver Radio for Wideband Mm-wave Communications
用于宽带毫米波通信的全模拟全双工双接收器无线电
- 批准号:
EP/X041581/1 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Research Grant
All Analogue Full-duplex Dual-receiver Radio for Wideband Mm-wave Communications
用于宽带毫米波通信的全模拟全双工双接收器无线电
- 批准号:
EP/X041395/1 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Research Grant
ERI: Low-Cost, Miniaturized, Wideband and Wide-Angle Beam Steering Array For 5G Communication System
ERI:用于 5G 通信系统的低成本、小型化、宽带和广角波束控制阵列
- 批准号:
2301851 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Transients objects studies by ultrafast wideband observations
通过超快宽带观测研究瞬态物体
- 批准号:
23H01194 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on Insulation Properties and Diagnostics for Smart Electric Power Equipment by Measuring Discharge Current Using a Super High Frequency Wideband Measurement System with Picosecond resolution
利用皮秒分辨率超高频宽带测量系统测量放电电流来研究智能电力设备的绝缘性能和诊断
- 批准号:
23H01401 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Diamond-based wideband radiofrequency fibre-optic sensor
金刚石基宽带射频光纤传感器
- 批准号:
LP210300230 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Linkage Projects
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329014 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329012 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: Deep Learning and Signal Processing using Silicon Photonics and Digital CMOS Circuits for Ultra-Wideband Spectrum Perception
合作研究:FuSe:利用硅光子学和数字 CMOS 电路实现超宽带频谱感知的深度学习和信号处理
- 批准号:
2329015 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Measurement of interstellar magnetic field by Zeeman observation using new ultra-wideband and high-sensitivity receiver eQ
使用新型超宽带高灵敏度接收器 eQ 通过塞曼观测测量星际磁场
- 批准号:
23H01218 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Grant-in-Aid for Scientific Research (B)