CAREER: Advancing Network Configuration and Runtime Adaptation Methods for Industrial Wireless Sensor-Actuator Networks
职业:推进工业无线传感器执行器网络的网络配置和运行时适应方法
基本信息
- 批准号:2150010
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A decade of real-world deployments of industrial wireless standards, such as WirelessHART and ISA100, has demonstrated the feasibility of using IEEE 802.15.4-based wireless sensor-actuator networks (WSANs) to achieve reliable and real-time wireless communication in industrial environments. Although WSANs work satisfactorily most of the time thanks to years of research, they are often difficult to configure as configuring a WSAN is a complex process, which involves theoretical computation, simulation, field testing, among other tasks. To support new services that require high data rates and mobile platforms, industrial WSANs are adopting wireless technologies such as 5G and LoRa and becoming increasingly hierarchical, heterogeneous, and complex, which significantly increases the network configuration difficulty. This CAREER project aims to advance network configuration and runtime adaptation methods for industrial WSANs. Research outcomes from this project will significantly enhance the resilience and agility of industrial WSANs and reduce human involvement in network management, leading to a significant improvement in industrial efficiency and a remarkable reduction of operating costs. By providing more advanced WSANs, the research outcomes from this project will significantly spur the installation of WSANs in process industries and enable a broad range of new wireless-based applications, which affects economics, security, and quality of life. This project enhances lectures and course project materials, supports curriculum developments, creates research opportunities for undergraduate and graduate students, and establishes outreach programs for K-12 students. Different from traditional methods that rely largely on experience and rules of thumb that involve a coarse-grained analysis of network load or dynamics during a few field trials, this project develops a rigorous methodology that leverages advanced machine learning techniques to configure and adapt WSANs by harvesting the valuable resources (e.g., theoretical models and simulation methods) accumulated by the wireless research community. This project develops new methods that leverage wireless simulations and deep learning to relate high-level network performance to low-level network configurations and efficiently adapt the network at runtime to satisfy the performance requirements specified by industrial applications. This project demonstrates the performance of WSANs that are equipped with those new methods through testbed experimentation, case study, and real-world validation. The research outcomes from this project affects not only industrial WSANs but other complex wireless networks as this project creates a replicable template for novel network configuration and runtime adaptation strategies that advance the state of the art of wireless network management.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
工业无线标准(如WirelessHART和ISA 100)的十年实际部署已经证明了使用基于IEEE 802.15.4的无线传感器-执行器网络(WSAN)在工业环境中实现可靠和实时无线通信的可行性。尽管经过多年的研究,WSAN在大多数情况下都能令人满意地工作,但它们通常很难配置,因为配置WSAN是一个复杂的过程,其中涉及理论计算、仿真、现场测试等任务。为了支持需要高数据速率和移动的平台的新业务,工业WSAN正在采用5G和LoRa等无线技术,并且变得越来越分层,异构和复杂,这大大增加了网络配置的难度。这个CAREER项目的目的是推进工业WSAN的网络配置和运行时自适应方法。该项目的研究成果将显著提高工业WSAN的弹性和敏捷性,减少网络管理中的人为参与,从而显著提高工业效率,显著降低运营成本。通过提供更先进的WSAN,该项目的研究成果将大大促进WSAN在过程工业中的安装,并实现广泛的新的基于无线的应用,这将影响经济性,安全性和生活质量。该项目增强了讲座和课程项目材料,支持课程开发,为本科生和研究生创造研究机会,并为K-12学生建立推广计划。与传统方法不同,传统方法主要依赖于经验和经验法则,涉及在几次现场试验期间对网络负载或动态进行粗粒度分析,该项目开发了一种严格的方法,该方法利用先进的机器学习技术通过收集有价值的资源(例如,理论模型和仿真方法)。该项目开发了利用无线模拟和深度学习将高级网络性能与低级网络配置相关联的新方法,并在运行时有效地调整网络,以满足工业应用指定的性能要求。该项目通过试验台实验、案例研究和真实世界验证来展示配备了这些新方法的WSAN的性能。该项目的研究成果不仅影响工业WSAN,还影响其他复杂的无线网络,因为该项目为新型网络配置和运行时自适应策略创建了可复制的模板,从而推动了无线网络管理的发展。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响评审标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
TrafficSpy: Disaggregating VPN-encrypted IoT Network Traffic for User Privacy Inference
TrafficSpy:分解 VPN 加密的物联网网络流量以进行用户隐私推断
- DOI:10.1109/cns56114.2022.9947251
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Li, Qi;Yu, Keyang;Chen, Dong;Sha, Mo;Cheng, Long
- 通讯作者:Cheng, Long
Meta-Learning Based Runtime Adaptation for Industrial Wireless Sensor-Actuator Networks
- DOI:10.1109/iwqos57198.2023.10188720
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Xia Cheng;M. Sha
- 通讯作者:Xia Cheng;M. Sha
Enabling Cross-technology Communication from LoRa to ZigBee in the 2.4 GHz Band
- DOI:10.1145/3491222
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Junyang Shi;Xingjian Chen;M. Sha
- 通讯作者:Junyang Shi;Xingjian Chen;M. Sha
Adapting Wireless Mesh Network Configuration from Simulation to Reality via Deep Learning based Domain Adaptation
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Junyang Shi;M. Sha;Xi Peng
- 通讯作者:Junyang Shi;M. Sha;Xi Peng
Enabling Direct Message Dissemination in Industrial Wireless Networks via Cross-Technology Communication
- DOI:10.1109/infocom53939.2023.10228891
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Di Mu;Yitian Chen;Xingjian Chen;Junyang Shi;M. Sha
- 通讯作者:Di Mu;Yitian Chen;Xingjian Chen;Junyang Shi;M. Sha
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mo Sha其他文献
Empirical Studies for Reliable Home Area Wireless Sensor Empirical Studies for Reliable Home Area Wireless Sensor Networks Networks
可靠家庭区域无线传感器的实证研究 可靠家庭区域无线传感器网络的实证研究
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Mo Sha;Professor Chenyang Lu;Greg Hackmann;Chengjie Wu;Sisu Xi;Yong Fu;Bo Li;Abusayeed Saifullah;Rahav Dor - 通讯作者:
Rahav Dor
Blue Energy: Blue Energy Collection toward All‐Hours Self‐Powered Chemical Energy Conversion (Adv. Energy Mater. 33/2020)
蓝色能源:蓝色能量收集实现全天候自供电化学能转换(Adv. Energy Mater. 33/2020)
- DOI:
10.1002/aenm.202070139 - 发表时间:
2020 - 期刊:
- 影响因子:27.8
- 作者:
Ningning Zhai;Zhen Wen;Xiaoping Chen;Aimin Wei;Mo Sha;Jingjing Fu;Yina Liu;J. Zhong;Xuhui Sun - 通讯作者:
Xuhui Sun
Fault diagnosis of TE process based on ensemble improved binary-tree SVM
基于集成改进二叉树SVM的TE过程故障诊断
- DOI:
10.1109/bicta.2010.5645140 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Anna Wang;Mo Sha;Limei Liu;Fengyun Zhao - 通讯作者:
Fengyun Zhao
All Theses and Dissertations ( ETDs ) January 2011 Empirical Studies for Reliable Home Area Wireless Sensor Networks
所有论文 (ETD) 2011 年 1 月 可靠家庭区域无线传感器网络的实证研究
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Mo Sha;Chenyang Lu;Yixin Chen;Christopher Gill;Greg Hackmann;Chengjie Wu;Sisu Xi;Yong Fu;Bo Li;Abusayeed Saifullah - 通讯作者:
Abusayeed Saifullah
A Virtual Sample Generation Approach for Blast Furnace Fault Diagnosis
高炉故障诊断的虚拟样本生成方法
- DOI:
10.4028/www.scientific.net/amm.303-306.1379 - 发表时间:
2013-02 - 期刊:
- 影响因子:0
- 作者:
Mo Sha;Anna Wang;Maoxiang Chu;Limei Liu - 通讯作者:
Limei Liu
Mo Sha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mo Sha', 18)}}的其他基金
CAREER: Advancing Network Configuration and Runtime Adaptation Methods for Industrial Wireless Sensor-Actuator Networks
职业:推进工业无线传感器执行器网络的网络配置和运行时适应方法
- 批准号:
2046538 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CRII: NeTS: Self-Adaptation in Industrial Wireless Sensor-Actuator Networks
CRII:NeTS:工业无线传感器执行器网络的自适应
- 批准号:
1657275 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: SOS-DCI / HNDS-R: Advancing Semantic Network Analysis to Better Understand How Evaluative Exchanges Shape Scientific Arguments
合作研究:SOS-DCI / HNDS-R:推进语义网络分析,以更好地理解评估性交流如何塑造科学论证
- 批准号:
2244805 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Skin Investigation Network of Canada (SkIN Canada): Advancing interdisciplinary, patient-relevant research to improve skin health
加拿大皮肤调查网络 (SkIN Canada):推进跨学科、与患者相关的研究,以改善皮肤健康
- 批准号:
481682 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Operating Grants
Collaborative Research: SOS-DCI / HNDS-R: Advancing Semantic Network Analysis to Better Understand How Evaluative Exchanges Shape Scientific Arguments
合作研究:SOS-DCI / HNDS-R:推进语义网络分析,以更好地理解评估性交流如何塑造科学论证
- 批准号:
2244804 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
TASK AREAS TWO (2), THREE (3), FOUR (4), AND SIX (6)FOR THE NATIONAL INSTITUTE OF HEALTH (NIH) BRAIN RESEARCH THROUGH ADVANCING INNOVATIVE NEUROTECHNOLOGIES (BRAIN) INITIATIVE CELL ATLAS NETWORK (BIC
任务领域二 (2)、三 (3)、四 (4) 和六 (6) 用于美国国立卫生研究院 (NIH) 通过推进创新神经技术 (大脑) 倡议细胞图谱网络 (BIC) 进行脑研究
- 批准号:
10931181 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Advancing Geriatrics Infrastructure and Network Growth (AGING) Initiative
推进老年病学基础设施和网络发展 (AGING) 计划
- 批准号:
10732291 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
AccelNet Implementation: International Network For Researching, Advancing and Assessing Materials for Environmental Sustainability (INFRAMES)
AccelNet 实施:环境可持续性材料研究、推进和评估国际网络 (INFRAMES)
- 批准号:
2114682 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Advancing Bioinformatic Technologies for Lipidomic Discovery: Lipid Identification, Pathway Analysis, Network Analysis
推进脂质组学发现的生物信息学技术:脂质鉴定、通路分析、网络分析
- 批准号:
RGPIN-2019-06796 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Network for Advancing Methodological Research in Longitudinal Studies of Aging
推进老龄化纵向研究方法论研究网络
- 批准号:
10435769 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Advancing Neural Network Models of Language Processing
推进语言处理的神经网络模型
- 批准号:
RGPIN-2017-06310 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Advancing the Extended Specimen Network: Curating and Digitizing the Sherwin Carlquist Collection
合作研究:推进扩展标本网络:舍温·卡尔奎斯特收藏的策展和数字化
- 批准号:
2133562 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant