REU Site: Using Data Science Tools to Improve Neighborhoods
REU 网站:使用数据科学工具改善社区
基本信息
- 批准号:2150505
- 负责人:
- 金额:$ 34.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project is funded from the Research Experiences for Undergraduates (REU) Sites program in the Directorate for Social, Behavioral, and Economic (SBE) Sciences. This program will engage students in exploration of economic, environmental, and infrastructure challenges in Dallas, Texas, using publicly available data sources. The eight-week program will begin with a three-week period of lectures in social science theory and research methods, including place-based economics, data collection methodologies and sources, and data ethics. Simultaneous technical workshops will equip students with skills in coding, data wrangling, and use of mapping software. Each participant will then join a research team focused on measuring variability or mitigating disparities across urban neighborhoods. The objectives of the REU site are to provide students with expertise in data science methods and tools for studying problems affecting small geographies; to increase interest in data science and the likelihood that participating students will pursue graduate studies in a related field, especially for students underrepresented in these fields; to engage students in research that requires interdisciplinary skills and knowledge; and to increase collaboration across disciplinary boundaries for both faculty and students, and between university researchers and community partners.Examples of research team topics are: (a) assessing the fairness of county polling place locations; (b) describing the change in urban heat island locations and intensity over time, as well as its proximity to neighborhoods; (c) evaluating economic development, workforce development, and affordable housing interventions in small urban areas; and (d) educating and empowering neighborhoods near toxic chemical waste sites using data-driven findings. To address its questions, each team will use specialized methodologies and tools, which the students will be exposed to under the supervision of their mentoring faculty and graduate student team. The methodologies will vary by problem, but collectively include causal inference, complex survey design and analysis, clustering and prediction, data visualization and storytelling, and human-centered design. The research findings will be shared in a university-wide three-minute thesis contest for all summer undergraduate researchers, and an opportunity to publish a paper in the universities Journal of Undergraduate Research. Besides the participants’ direct contribution to these studies, the data products they produce by retrieving, wrangling, and curating the public data will make a valuable contribution to a collective data resource about Dallas, which can be shared with local researchers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由社会、行为和经济科学理事会(SBE)本科生研究经验(REU)站点计划资助。该项目将利用公开的数据资源,让学生探索德克萨斯州达拉斯市的经济、环境和基础设施挑战。这个为期八周的项目将以为期三周的社会科学理论和研究方法讲座开始,包括基于地点的经济学、数据收集方法和来源以及数据伦理。同时进行的技术研讨会将使学生掌握编码、数据整理和使用地图软件的技能。然后,每个参与者将加入一个研究小组,专注于测量城市社区的变异性或减轻差异。REU网站的目标是为学生提供数据科学方法和工具方面的专业知识,以研究影响小地理区域的问题;增加对数据科学的兴趣和参与学生在相关领域攻读研究生的可能性,特别是在这些领域代表性不足的学生;让学生参与需要跨学科技能和知识的研究;并加强教师和学生之间以及大学研究人员和社区合作伙伴之间的跨学科合作。研究小组课题的例子有:(a)评估县投票地点的公平性;(b)描述城市热岛位置和强度随时间的变化,以及其与社区的接近程度;(c)评估小城市地区的经济发展、劳动力发展和经济适用房干预措施;(d)利用数据驱动的研究结果,对有毒化学废物场址附近的社区进行教育和赋权。为了解决问题,每个团队将使用专门的方法和工具,学生将在指导教师和研究生团队的监督下接触到这些方法和工具。方法因问题而异,但总的来说包括因果推理,复杂的调查设计和分析,聚类和预测,数据可视化和故事叙述,以及以人为中心的设计。研究成果将在全校范围内举行的三分钟论文竞赛中分享,所有夏季本科生研究人员都有机会在大学本科生研究期刊上发表论文。除了参与者对这些研究的直接贡献外,他们通过检索、整理和整理公共数据产生的数据产品将对有关达拉斯的集体数据资源作出宝贵的贡献,这些资源可以与当地研究人员共享。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sara Stokes其他文献
Lean-Thinking: Implementation and Measurement in Healthcare Settings
精益思维:医疗保健环境中的实施和衡量
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2.5
- 作者:
L. Mazur;Sara Stokes;J. McCreery - 通讯作者:
J. McCreery
Sara Stokes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
新型WDR5蛋白Win site抑制剂的合理设计、合成及其抗肿瘤活性研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有共形结构的高性能Ta4SiTe4基有机/无机复合柔性热电薄膜
- 批准号:52172255
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于重要农地保护LESA(Land Evaluation and Site Assessment)体系思想的高标准基本农田建设研究
- 批准号:41340011
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
REU Site: University of North Carolina at Greensboro - Complex Data Analysis using Statistical and Machine Learning Tools
REU 站点:北卡罗来纳大学格林斯伯勒分校 - 使用统计和机器学习工具进行复杂数据分析
- 批准号:
2244160 - 财政年份:2023
- 资助金额:
$ 34.91万 - 项目类别:
Standard Grant
REU Site: Fluid Mechanics with Analysis using Computations and Experiments (FM-ACE)
REU 网站:使用计算和实验进行分析的流体力学 (FM-ACE)
- 批准号:
2244313 - 财政年份:2023
- 资助金额:
$ 34.91万 - 项目类别:
Standard Grant
REU Site: Collaborative Research: Developing, Analyzing, and Evaluating Self-drive Algorithms Using Real Street Legal Electric Vehicles on Campus
REU 网站:合作研究:在校园内使用真实街道合法电动汽车来开发、分析和评估自动驾驶算法
- 批准号:
2150096 - 财政年份:2022
- 资助金额:
$ 34.91万 - 项目类别:
Standard Grant
REU Site: Collaborative Research: Developing, Analyzing, and Evaluating Self-drive Algorithms Using Real Street Legal Electric Vehicles on Campus
REU 网站:合作研究:在校园内使用真实街道合法电动汽车来开发、分析和评估自动驾驶算法
- 批准号:
2150292 - 财政年份:2022
- 资助金额:
$ 34.91万 - 项目类别:
Standard Grant
REU Site: Characterization of Materials Using Synchrotron and X-ray Based Tools
REU 网站:使用基于同步加速器和 X 射线的工具表征材料
- 批准号:
2050916 - 财政年份:2021
- 资助金额:
$ 34.91万 - 项目类别:
Standard Grant
REU Site: University of North Carolina at Greensboro in Complex Data Analysis using Statistical and Machine Learning Tools
REU 网站:北卡罗来纳大学格林斯博罗分校使用统计和机器学习工具进行复杂数据分析
- 批准号:
1950549 - 财政年份:2020
- 资助金额:
$ 34.91万 - 项目类别:
Standard Grant
REU Site: Chemical Research Using X-Ray Characterization (CRUX)
REU 站点:使用 X 射线表征的化学研究 (CRUX)
- 批准号:
1852543 - 财政年份:2019
- 资助金额:
$ 34.91万 - 项目类别:
Continuing Grant
REU Site: Summer Undergraduate Program in Engineering Research at Berkeley (SUPERB): Collecting and Using Big Data for the Public Good
REU 网站:伯克利工程研究暑期本科生课程(SUPERB):为公共利益收集和使用大数据
- 批准号:
1659833 - 财政年份:2017
- 资助金额:
$ 34.91万 - 项目类别:
Standard Grant
REU Site: Fluid Mechanics with Analysis using Computations and Experiments (FM-ACE)
REU 网站:使用计算和实验进行分析的流体力学 (FM-ACE)
- 批准号:
1659710 - 财政年份:2017
- 资助金额:
$ 34.91万 - 项目类别:
Standard Grant
REU Site: INCLUSION - Incubating a New Community of Leaders Using Software, Inclusion, Innovation, Interdisciplinary and OpeN-Science
REU 网站:包容性 - 利用软件、包容性、创新、跨学科和开放科学孵化新的领导者社区
- 批准号:
1659702 - 财政年份:2017
- 资助金额:
$ 34.91万 - 项目类别:
Standard Grant