CHS: Small: Guiding future design of affect-aware cyber-human systems through the investigation of human reactions to machine errors

CHS:小型:通过研究人类对机器错误的反应来指导情感感知网络人类系统的未来设计

基本信息

  • 批准号:
    2151464
  • 负责人:
  • 金额:
    $ 44.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

This project obtains new fundamental knowledge about how people react to errors made by affect-aware technologies. Such technologies analyze measurements such as heart rate, brain activity and body gestures to obtain an estimate of a user's mental and emotional state; they then take actions to improve the user's state - for example, by helping with a task. However, since the measurements are often hard to interpret, affect-aware technologies often make mistakes. Led by an interdisciplinary group of researchers in engineering and psychology, this project will examine how users react to and compensate for different types of errors made by affect-aware technologies. This will help guide future design of such technologies, as it will help researchers and developers identify what the minimal acceptable accuracy of an affect-aware device is and what types of errors most critically need to be reduced by developers. Results of the research will advance national health and well-being in many ways, as affect-aware technologies are becoming increasingly common for diverse applications such as detecting drowsiness in drivers, adaptive automation in flight and resource management, adaptation of learning material to students, and adaptation of rehabilitation exercises to patients. The team will develop new interdisciplinary courses in human factors and human-computer interaction, and will perform outreach about cyber-human systems to multiple groups including K-12 and community college students and teachers all around Wyoming.The project is structured as a series of four lab studies involving human subjects, all using a set of physiological sensors and the NASA Multi-Attribute Task Battery. As little is known about user reactions to machine errors in affect-aware cyber-human systems, the first three lab studies will systematically vary four critical characteristics: the accuracy with which they recognize the user's psychological state, the magnitude of the actions (changes to task difficulty) taken by the system, the impact that an error has on task performance, and the transparency of the system's decision-making process. The errors will be induced with a Wizard of Oz experiment design in which, unknown to the subject, the machine responses are actually simulated by a human operator. In this project, the user will be asked how they would like to change the difficulty of the Multi-Attribute Task Battery, and errors will be induced by doing the opposite of what the user wants. Users will be unaware of this manipulation, and will be told that the errors are actually due to poor signal processing and pattern recognition. The last study will then examine the trade-off between a system's state recognition accuracy and its user-friendliness with regard to user acceptance of the system. In all four studies, the outcome measures will be objective task performance as well as subjective user experience reported with the NASA Task Load Index and Intrinsic Motivation Inventory. This will provide the research community with detailed information about how different characteristics of affect-aware cyber-human systems influence both objective and subjective aspects of users' experiences with such systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目获得了关于人们如何对影响感知技术所犯错误做出反应的新的基础知识。这些技术分析心率、大脑活动和身体姿势等测量数据,以获得对用户精神和情绪状态的估计;然后采取行动改善用户的状态-例如,通过帮助完成任务。然而,由于测量结果通常很难解释,影响感知技术经常出错。该项目由工程学和心理学的跨学科研究人员领导,将研究用户如何对影响感知技术所造成的不同类型的错误做出反应和补偿。这将有助于指导此类技术的未来设计,因为它将帮助研究人员和开发人员确定影响感知设备的最低可接受精度是什么,以及开发人员最需要减少哪些类型的错误。研究结果将在许多方面促进国民健康和福祉,因为影响感知技术在各种应用中变得越来越普遍,例如检测驾驶员的困倦,飞行和资源管理中的自适应自动化,学习材料的适应学生,以及康复练习的适应患者。该团队将开发人的因素和人机交互方面的新的跨学科课程,并将对多个群体进行关于网络人类系统的推广,包括K-12和社区大学的学生和教师,遍布怀俄明州。该项目的结构是一系列的四个实验室研究,涉及人类受试者,所有使用一套生理传感器和NASA多属性任务电池。由于对用户对情感感知网络人类系统中机器错误的反应知之甚少,前三项实验室研究将系统地改变四个关键特征:他们识别用户心理状态的准确性,系统采取的行动的大小(任务难度的变化),错误对任务性能的影响,以及系统决策过程的透明度。这些错误将由一个绿野仙踪实验设计引起,在这个实验中,受试者不知道机器的反应实际上是由人类操作员模拟的。在这个项目中,用户将被问到他们想如何改变多属性任务组合的难度,错误将通过做用户想要的相反的事情来诱导。用户将不知道这种操作,并将被告知错误实际上是由于信号处理和模式识别不良。最后一项研究将探讨系统的状态识别精度和用户友好性之间的权衡,用户接受的系统。在所有四项研究中,结果测量将是客观的任务表现以及主观的用户体验报告与美国宇航局的任务负荷指数和内在动机清单。这将为研究界提供有关影响感知网络人类系统的不同特征如何影响用户使用此类系统的客观和主观方面的详细信息。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vesna Novak其他文献

Localised Langerhans cell histiocytosis of the hypothalamic-pituitary region: case report and literature review
  • DOI:
    10.1007/s42000-018-0024-6
  • 发表时间:
    2018-04-16
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Danijela Radojkovic;Milica Pesic;Dragan Dimic;Tatjana Radjenovic Petkovic;Sasa Radenkovic;Milena Velojic-Golubovic;Vesna Novak;Ivan Ilic;Milan Radojkovic
  • 通讯作者:
    Milan Radojkovic
Students’ Perception of HR Competencies
学生对人力资源能力的看法
  • DOI:
    10.1515/orga-2015-0003
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Vesna Novak;Anja Žnidaršič;Polona Šprajc
  • 通讯作者:
    Polona Šprajc
The Transition of Young People from Study to Employment in the Light of Student Work
从学生工作看青少年从求学到就业的转变
  • DOI:
    10.2478/orga-2018-0016
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Vesna Novak;Anja Žnidaršič
  • 通讯作者:
    Anja Žnidaršič
Fatigue among anaesthesiologists in Europe
欧洲麻醉师的疲劳
  • DOI:
    10.1097/eja.0000000000001923
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Anne Marie Camilleri Podesta;Nancy Redfern;Igor Abramovich;J. Mellin;K. Oremuš;Pinelopi Kouki;Emilia Guasch;Vesna Novak;O. Sabelnikovs;Federico Bilotta;Ioana Grigoras
  • 通讯作者:
    Ioana Grigoras
TEŠKE KRANIOCEREBRALNE POVREDE: PREŽIVLJAVANJE BOLESNIKA U ODNOSU NA PRISUSTVO I VREDNOSTI INTRAKRANIJALNE HIPERTENZIJE
TEŠKE KRANIOCEREBRALNE POVREDE: PREŽIVLJAVANJE BOLESNIKA U ODNOSU NA PRISUSTVO I VREDNOSTI INTRAKRANIJALNE HIPERTENZIJE
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aleksandar Kostić;Ivan Stefanovic;Vesna Novak;Aleksandar Igić;Boban Jelenkovic;Goran Ivanov
  • 通讯作者:
    Goran Ivanov

Vesna Novak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vesna Novak', 18)}}的其他基金

Investigating the Relationship Between an Intelligent Trunk Exoskeleton and Its Wearer as a Basis for Improved Assistance and Rehabilitation
研究智能躯干外骨骼与其佩戴者之间的关系,作为改善辅助和康复的基础
  • 批准号:
    2151465
  • 财政年份:
    2021
  • 资助金额:
    $ 44.84万
  • 项目类别:
    Standard Grant
CHS: Small: Guiding future design of affect-aware cyber-human systems through the investigation of human reactions to machine errors
CHS:小型:通过研究人类对机器错误的反应来指导情感感知网络人类系统的未来设计
  • 批准号:
    2007908
  • 财政年份:
    2020
  • 资助金额:
    $ 44.84万
  • 项目类别:
    Standard Grant
Investigating the Relationship Between an Intelligent Trunk Exoskeleton and Its Wearer as a Basis for Improved Assistance and Rehabilitation
研究智能躯干外骨骼与其佩戴者之间的关系,作为改善辅助和康复的基础
  • 批准号:
    1933409
  • 财政年份:
    2020
  • 资助金额:
    $ 44.84万
  • 项目类别:
    Standard Grant
CHS:Small: A Kinder, Gentler Technology: Enhancing Human-Machine Symbiosis Using Adaptive, Personalized Affect-Aware Systems
CHS:Small:更友善、更温和的技术:使用自适应、个性化情感感知系统增强人机共生
  • 批准号:
    1717705
  • 财政年份:
    2017
  • 资助金额:
    $ 44.84万
  • 项目类别:
    Standard Grant

相似国自然基金

基于人工智能的多模态预测局限期小细胞肺癌患者脑转移风险及指导个体化预防性颅脑放疗的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于晶体结构和类药性质指导选择性ATM 小分子抑制剂的设计、合成及抗胶质母细胞瘤的活性机制研究
  • 批准号:
    JCZRQN202500438
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
脑缺血后神经元活性调控突触PS外翻指导小胶质细胞C1q依赖的突触修剪参与功能康复的机制研究
  • 批准号:
    82372577
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
III期不可手术切除非小细胞肺癌诱导化疗联合免疫治疗后行多学科团队指导的治疗模式:一项前瞻性队列研究
  • 批准号:
    2023JJ60327
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于人工智能指导的影像组学标志物用于广泛期肺小细胞癌精准分型及免疫治疗疗效评价的探索性研究
  • 批准号:
    LTGY23H010004
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于Brigatinib复合物结构指导的抗肺癌EGFR T790M/C797S新药设计与研发
  • 批准号:
    81903539
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
靶向PD-L1小分子探针PET显像并指导NSCLC放疗联合免疫治疗研究
  • 批准号:
    81873903
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
复合物结构研究指导抗肺癌EGFR T790M突变新药研发
  • 批准号:
    31270769
  • 批准年份:
    2012
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
  • 批准号:
    2312089
  • 财政年份:
    2024
  • 资助金额:
    $ 44.84万
  • 项目类别:
    Standard Grant
NeTS: Small: NSF-DST: Modernizing Underground Mining Operations with Millimeter-Wave Imaging and Networking
NeTS:小型:NSF-DST:利用毫米波成像和网络实现地下采矿作业现代化
  • 批准号:
    2342833
  • 财政年份:
    2024
  • 资助金额:
    $ 44.84万
  • 项目类别:
    Standard Grant
CPS: Small: NSF-DST: Autonomous Operations of Multi-UAV Uncrewed Aerial Systems using Onboard Sensing to Monitor and Track Natural Disaster Events
CPS:小型:NSF-DST:使用机载传感监测和跟踪自然灾害事件的多无人机无人航空系统自主操作
  • 批准号:
    2343062
  • 财政年份:
    2024
  • 资助金额:
    $ 44.84万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403559
  • 财政年份:
    2024
  • 资助金额:
    $ 44.84万
  • 项目类别:
    Standard Grant
オミックス解析を用いたブドウ球菌 small colony variants の包括的特徴づけ
使用组学分析全面表征葡萄球菌小菌落变体
  • 批准号:
    24K13443
  • 财政年份:
    2024
  • 资助金额:
    $ 44.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
  • 批准号:
    2332922
  • 财政年份:
    2024
  • 资助金额:
    $ 44.84万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 44.84万
  • 项目类别:
    Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
  • 批准号:
    2331111
  • 财政年份:
    2024
  • 资助金额:
    $ 44.84万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 44.84万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 44.84万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了