FRG: Collaborative Research: Mathematical and Statistical Analysis of Compressible Data on Compressive Networks
FRG:协作研究:压缩网络上可压缩数据的数学和统计分析
基本信息
- 批准号:2152070
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Large-scale high-dimensional data sets are becoming ubiquitous in modern society, particularly in the areas of physical, biomedical, and social applications. This focused research group (FRG) will address the foundational challenges, both computational and theoretical, arising in the analysis of high-dimensional data by leveraging its compressible features. Discovering such compressible features is a major challenge in data analysis, which the team of investigators will approach using hierarchical decompositions derived from spectral, statistical, and algebraic geometric analysis of data. In contrast to interpolation-based methods, such as deep neural networks which are often difficult to interpret, the group will construct optimally defined compressive networks, specifically tailored to such compressible features. Doing so will enable an accurate and efficient extraction and manipulation of sparse representations of high-dimensional data in an inherently interpretable manner. For instance, one focus of the project is to extend the binary expansion testing methods developed by members of the group, which have shown promise in both statistical power and computational complexity in low-dimensional settings. A high-dimensional generalization of binary expansion testing would, in turn, enable the direct application to selecting personalized medical treatment plans based on increasingly complex data sets. The FRG investigators will collaborate across the disciplines of mathematical analysis, data science, statistics, and computation, as well as across institutions. The specific goals of this project include generalizing classical concepts of "compressible" features using ideas from spectral theory, algebraic geometry, energy and optimization, and network interactions. This will lead to a deeper understanding of the mathematical and statistical foundations of compressible high-dimensional data sets on compressive networks. Using newly developed compressible features, the FRG team will then design and develop accurate and efficient computational tools for large-scale high-dimensional data sets. All the work to be done will be aimed at collaborating directly with application domain scientists to enhance the efficacy of the proposed methods. The FRG investigators will also jointly mentor graduate and undergraduate students, who will then have the benefits of training across disciplines and access to a variety of ideas and tools in complementary and integrative research areas.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大规模高维数据集在现代社会中变得无处不在,特别是在物理、生物医学和社会应用领域。这个重点研究小组(FRG)将通过利用其可压缩特性来解决高维数据分析中出现的计算和理论方面的基本挑战。发现这样的可压缩特征是数据分析中的一个主要挑战,研究人员团队将使用来自数据的光谱,统计和代数几何分析的分层分解来处理。与基于插值的方法(例如通常难以解释的深度神经网络)相比,该小组将构建最佳定义的压缩网络,专门针对此类可压缩特征进行定制。 这样做将能够以固有的可解释方式准确有效地提取和操纵高维数据的稀疏表示。例如,该项目的一个重点是扩展该小组成员开发的二进制扩展测试方法,这些方法在低维设置中的统计能力和计算复杂性方面都表现出了希望。二进制扩展测试的高维泛化反过来又可以直接应用于基于日益复杂的数据集选择个性化的医疗计划。FRG研究人员将在数学分析、数据科学、统计学和计算等学科以及跨机构开展合作。这个项目的具体目标包括推广经典概念的“可压缩”功能使用的思想,从光谱理论,代数几何,能量和优化,网络相互作用。这将导致对压缩网络上可压缩高维数据集的数学和统计基础的更深入理解。 利用新开发的可压缩特性,FRG团队将为大规模高维数据集设计和开发准确有效的计算工具。 所有要做的工作都旨在与应用领域的科学家直接合作,以提高拟议方法的有效性。FRG研究人员还将联合指导研究生和本科生,他们将获得跨学科培训的好处,并获得互补和综合研究领域的各种想法和工具。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toward Systematic Considerations of Missingness in Visual Analytics
对视觉分析中缺失的系统考虑
- DOI:10.1109/vis54862.2022.00031
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Sun, Maoyuan;Ma, Yue;Wang, Yuanxin;Li, Tianyi;Zhao, Jian;Liu, Yujun;Zhong, Ping-Shou
- 通讯作者:Zhong, Ping-Shou
Asymptotic independence of spiked eigenvalues and linear spectral statistics for large sample covariance matrices
- DOI:10.1214/22-aos2183
- 发表时间:2020-09
- 期刊:
- 影响因子:0
- 作者:Zhixiang Zhang;Shu-rong Zheng;G. Pan;Pingshou Zhong
- 通讯作者:Zhixiang Zhang;Shu-rong Zheng;G. Pan;Pingshou Zhong
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yichao Wu其他文献
Soil phyllosilicate and iron oxide inhibit the quorum sensing of Chromobacterium violaceum
土壤页硅酸盐和氧化铁抑制紫色色杆菌的群体感应
- DOI:
10.1007/s42832-020-0051-5 - 发表时间:
2020-07 - 期刊:
- 影响因子:4
- 作者:
Shanshan Yang;Chenchen Qu;Manisha Mukherjee;Yichao Wu;Qiaoyun Huang;Peng Cai - 通讯作者:
Peng Cai
Research on damage and stress monitoring analysis of cement-based materials based on integrated sensing element (ISE)
基于集成传感元件(ISE)的水泥基材料损伤与应力监测分析研究
- DOI:
10.1016/j.cscm.2025.e04789 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:6.600
- 作者:
Ming Sun;Weiwei Xu;Kaifeng Zheng;Yuanxing Wang;Weijian Ding;Jie Yao;Jianbin Zheng;Yichao Wu;Fengxia Xu - 通讯作者:
Fengxia Xu
Extraction of extracellular polymeric substances (EPS) from red soils (Ultisols)
从红土(Ultisols)中提取细胞外聚合物(EPS)
- DOI:
10.1016/j.soilbio.2019.05.014 - 发表时间:
2019-08 - 期刊:
- 影响因子:9.7
- 作者:
Shuang Wang;Marc Redmile-Gordon;Monika Mortimer;Peng Cai;Yichao Wu;Caroline L. Peacock;Chunhui Gao;Qiaoyun Huang - 通讯作者:
Qiaoyun Huang
Estimation and Prediction of a Class of Convolution-Based Spatial Nonstationary Models for Large Spatial Data
一类基于卷积的大空间数据空间非平稳模型的估计与预测
- DOI:
10.1198/jcgs.2009.07123 - 发表时间:
2010 - 期刊:
- 影响因子:2.4
- 作者:
Zhengyuan Zhu;Yichao Wu - 通讯作者:
Yichao Wu
Probability approximations with applications in computational finance and computational biology
概率近似在计算金融和计算生物学中的应用
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
C. Ji;H. Hurd;Yichao Wu - 通讯作者:
Yichao Wu
Yichao Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yichao Wu', 18)}}的其他基金
Collaborative Research: A Fast Hierarchical Algorithm for Computing High Dimensional Truncated Multivariate Gaussian Probabilities and Expectations
协作研究:计算高维截断多元高斯概率和期望的快速分层算法
- 批准号:
1821171 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: New Statistical Methods for Classification and Analysis of High Dimensional and Functional Data
职业:高维和功能数据分类和分析的新统计方法
- 批准号:
1812354 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: New Statistical Methods for Classification and Analysis of High Dimensional and Functional Data
职业:高维和功能数据分类和分析的新统计方法
- 批准号:
1055210 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Development of Statistical Methods for High-dimensional and Complex Data
高维复杂数据统计方法发展
- 批准号:
0905561 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
微尺度光-酶协同催化流动反应过程及其强化机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
高温蠕变与疲劳协同作用下多裂纹扩展寿命算法研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于复合相变界面材料及微通道结构调控协同散热研究
- 批准号:JCZRLH202500111
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于重大疫病多点触发医防融合防控策略研究
- 批准号:JCZRLH202501258
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
无人集群协同地下空间探索与建图
- 批准号:JCZRYB202500481
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
放疗联合CAR-T细胞治疗协同效应的免疫学机制
- 批准号:JCZRLH202500046
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于等离子体协同催化的氨燃料重整技术研究
- 批准号:JCZRLH202500823
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
抑制GLRX2协同雄激素疗法治疗去势抵抗性前列腺癌的机制研究
- 批准号:JCZRLH202500112
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
酵母可溶性多糖协同益生菌增效机制的研究
- 批准号:JCZRLH202500927
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
磁场诱导二维材料光催化析氢与热电输运性能协同增强研究
- 批准号:JCZRLH202501259
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant