Collaborative Research: Harnessing Mechanics for the Design of All-Solid-State Lithium Batteries

合作研究:利用力学设计全固态锂电池

基本信息

  • 批准号:
    2152561
  • 负责人:
  • 金额:
    $ 24.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

This grant will support fundamental research on the mechanics of lithium anodes in all-solid-state lithium batteries. All-solid-state lithium batteries are a promising candidate for next-generation, high-capacity rechargeable batteries. Lithium anodes can provide the highest energy density among all known anode materials. Solid-state electrolytes improve battery safety by eliminating flammable liquid electrolytes. However, new problems emerge. During charging, non-uniform lithium plating occurs at the anode, which can cause fracture of the current collector. During discharging, non-uniform lithium stripping leads to void formation, dead lithium, and capacity drop. Cracking and dendrite growth also occur in solid electrolytes, causing short-circuits. This research will investigate how mechanics can be used to achieve uniform and stable plating and stripping in lithium anodes. This research will advance next-generation battery technology for electric vehicles, contributing to the national economy and sustainability. This project will integrate the research capabilities of two Utah universities, and train next-generation engineers and scientists for research in renewable energy. Moreover, this grant will enhance the diversity of STEM fields by recruiting and training under-represented minorities. This research hypothesizes that mechanics can be harnessed as a control parameter to program electrochemical processes in all-solid-state lithium batteries and achieve “plasticity-assisted” uniform plating and stripping of lithium. Four research tasks are researched to test this hypothesis: (1) lithium plating and stripping are investigated using correlated mechanical-(electro)chemical-morphological characterization and residual stress measurements; (2) density functional theory and molecular dynamics simulations of lithium-solid electrolyte interfaces are used to quantify the stress and geometric effects on lithium plating/stripping at the atomic scale; (3) informed by the atomic simulations in Task 2, a continuum model is built to account for the interplay of stresses, interfacial geometries and chemical reactions; (4) integrated experiments and computations are leveraged in a mechanics-driven design approach for anode interfaces in all-solid-state lithium batteries to engineer plasticity-assisted uniform lithium plating/stripping.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该补助金将支持全固态锂电池中锂阳极力学的基础研究。全固态锂电池是下一代高容量可充电电池的一个有前途的候选者。在所有已知的阳极材料中,锂阳极可以提供最高的能量密度。固态电解质通过消除易燃液体电解质来提高电池安全性。然而,新的问题出现了。在充电过程中,在阳极处发生不均匀的锂电镀,这可能导致集电器破裂。在放电期间,不均匀的锂剥离导致空隙形成、死锂和容量下降。固体电解质中也会出现裂纹和枝晶生长,从而导致短路。本研究将研究如何使用机械来实现锂阳极的均匀和稳定的电镀和剥离。这项研究将推进下一代电动汽车电池技术,为国民经济和可持续发展做出贡献。该项目将整合犹他州两所大学的研究能力,并为可再生能源研究培训下一代工程师和科学家。此外,这笔赠款将通过招募和培训代表性不足的少数民族来增强STEM领域的多样性。这项研究假设力学可以作为控制参数来编程全固态锂电池中的电化学过程,并实现锂的“塑性辅助”均匀电镀和剥离。为了验证这一假设,本文开展了四个方面的研究工作:(1)采用相关的机械-(电)化学-形态学表征和残余应力测量方法研究了锂的电镀和剥离过程:(2)采用密度泛函理论和分子动力学模拟方法在原子尺度上对锂-固体电解质界面的应力和几何效应进行了量化;(3)通过任务2中的原子模拟,建立了一个连续介质模型来解释应力、界面几何形状和化学反应的相互作用;(4)在全固态锂电池阳极界面的力学驱动设计方法中,利用综合实验和计算来设计塑性辅助的均匀锂电镀。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Haoran Wang其他文献

Theoretical Investigation of Energetic Salts with Pentazolate Anion
五唑酸阴离子高能盐的理论研究
  • DOI:
    10.3390/molecules25081783
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Haoran Wang;Chong Zhang;Bingcheng Hu;Xuehai Ju
  • 通讯作者:
    Xuehai Ju
Solution-Processed Double-Junction Quantum-Dot Light-Emitting Diodes with EQE of Over 40%
溶液处理%20双结%20量子点%20发光%20二极管%20with%20EQE%20of%20Over%2040%
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Piaoyang Shen;Fan Cao;Haoran Wang;Bin Wei;Feijiu Wang;Xiao Wei Sun;Xuyong Yang
  • 通讯作者:
    Xuyong Yang
Stepwise Bi-Layer Hole-Transport Interlayers With Deep Highest Occupied Molecular Orbital Level for Efficient Green Quantum Dot Light-Emitting Diodes
具有深最高占据分子轨道能级的阶梯式双层空穴传输中间层,用于高效绿色量子点发光二极管
  • DOI:
    10.1109/led.2019.2916584
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Xiaojun Wang;Piaoyang Shen;Fan Cao;Sheng Wang;Haoran Wang;Qianqian Wu;Jianhua Zhang;Xuyong Yang
  • 通讯作者:
    Xuyong Yang
Some multiplicity one result on the mod $p$ cohomology of Shimura curves: the tame case
Shimura 曲线的 mod $p$ 上同调的一些多重性结果:温和的情况
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yong Hu;Haoran Wang
  • 通讯作者:
    Haoran Wang
YAN, a novel microtubule inhibitor, inhibits P-gp and MRP1 function and induces mitotic slippage followed by apoptosis in multidrug-resistant A549/Taxol cells
YAN 是一种新型微管抑制剂,可抑制 P-gp 和 MRP1 功能,诱导多重耐药 A549/Taxol 细胞有丝分裂滑移,随后发生细胞凋亡
  • DOI:
    10.1016/j.tiv.2020.104971
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Minghuan Gao;Tong Liu;Jingnan Li;Qi Guan;Haoran Wang;Shuqi Yan;Zengqiang Li;Daiying Zuo;Weige Zhang;Yingliang Wu
  • 通讯作者:
    Yingliang Wu

Haoran Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Haoran Wang', 18)}}的其他基金

ERI: Learning the Constitutive Equations of Chemo-Mechanics from Atomistic Simulations
ERI:从原子模拟中学习化学力学本构方程
  • 批准号:
    2138431
  • 财政年份:
    2022
  • 资助金额:
    $ 24.65万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

CLIMA/Collaborative Research: Enhancing Soil-Based Infrastructure Resilience to Climate Change: Harnessing the Potential of Fractured Soil by Adding Biopolymers
CLIMA/合作研究:增强土壤基础设施对气候变化的抵御能力:通过添加生物聚合物来利用破碎土壤的潜力
  • 批准号:
    2332082
  • 财政年份:
    2024
  • 资助金额:
    $ 24.65万
  • 项目类别:
    Continuing Grant
CLIMA/Collaborative Research: Enhancing Soil-Based Infrastructure Resilience to Climate Change: Harnessing the Potential of Fractured Soil by Adding Biopolymers
CLIMA/合作研究:增强土壤基础设施对气候变化的抵御能力:通过添加生物聚合物来利用破碎土壤的潜力
  • 批准号:
    2332081
  • 财政年份:
    2024
  • 资助金额:
    $ 24.65万
  • 项目类别:
    Continuing Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
  • 批准号:
    2312689
  • 财政年份:
    2023
  • 资助金额:
    $ 24.65万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    $ 24.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Education DCL: EAGER: Harnessing the Power of Large Language Models in Digital Forensics Education at MSI and HBCU
合作研究:教育 DCL:EAGER:在 MSI 和 HBCU 的数字取证教育中利用大型语言模型的力量
  • 批准号:
    2333951
  • 财政年份:
    2023
  • 资助金额:
    $ 24.65万
  • 项目类别:
    Standard Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
  • 批准号:
    2401244
  • 财政年份:
    2023
  • 资助金额:
    $ 24.65万
  • 项目类别:
    Continuing Grant
Collaborative Research: Harnessing the chirality matching principle for enhanced catalytic reactivity
合作研究:利用手性匹配原理增强催化反应活性
  • 批准号:
    2247709
  • 财政年份:
    2023
  • 资助金额:
    $ 24.65万
  • 项目类别:
    Continuing Grant
Collaborative Research: Education DCL: EAGER: Harnessing the Power of Large Language Models in Digital Forensics Education at MSI and HBCU
合作研究:教育 DCL:EAGER:在 MSI 和 HBCU 的数字取证教育中利用大型语言模型的力量
  • 批准号:
    2333950
  • 财政年份:
    2023
  • 资助金额:
    $ 24.65万
  • 项目类别:
    Standard Grant
Collaborative Research: Education DCL: EAGER: Harnessing the Power of Large Language Models in Digital Forensics Education at MSI and HBCU
合作研究:教育 DCL:EAGER:在 MSI 和 HBCU 的数字取证教育中利用大型语言模型的力量
  • 批准号:
    2333949
  • 财政年份:
    2023
  • 资助金额:
    $ 24.65万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324032
  • 财政年份:
    2023
  • 资助金额:
    $ 24.65万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了