Collaborative Research: CNS Core: Medium: Foundations and Scalable Algorithms for Personalized and Collaborative Virtual Reality Over Wireless Networks

协作研究:CNS 核心:中:无线网络上个性化和协作虚拟现实的基础和可扩展算法

基本信息

  • 批准号:
    2152610
  • 负责人:
  • 金额:
    $ 20.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Virtual reality (VR) over wireless networks can provide an interactive and immersive experience for multiple users simultaneously and thus has many applications, especially in VR-based education/training. However, satisfactory personalized user experience in such wireless immersive services demands stringent performance requirements, including: (1) high-speed and high-resolution panoramic image rendering; (2) extremely low delay guarantees; and (3) seamless user experience. Besides the aforementioned requirements, collaborative user experience requires both scalability and fairness of VR service. Existing VR systems heavily rely on various heuristic designs and do not efficiently exploit VR content commonality and its predictability, which impede their large-scale deployment. This project aims to develop the theoretical foundations and complete implementation of a system for providing both personalized and scalable collaborative VR experience over wireless networks. This project will integrate machine learning, wireless networking, and mobile computing to enable high-quality and scalable wireless immersive applications on commodity mobile devices. The theory and practical implementations to be developed in this project will be integrated into both undergraduate and graduate curriculum, as well as exposing K-12 students to state-of-the-art wireless and VR technologies.The proposed designs are motivated by a number of insights that we have developed from our preliminary work, including (1) viewport-adaptive rendering; (2) commonality among VR content for multiple users to enable multicasting; and (3) predictability of VR content to enable prefetching. The proposed research will contribute to and advance both theoretical and system-oriented research in the fields of wireless networks and virtual reality. The project explicitly exploits the unique characteristics of both immersive VR applications and wireless networks, and propose the following four interdependent research thrusts: (I) Dealing with network and prediction uncertainties: This thrust will investigate algorithm designs to optimize personalized user experience given both network and viewport prediction uncertainties. (II) Meeting stringent immersive service requirements: This thrust will develop wireless scheduling algorithms that provide stringent immersive, personalized service guarantees for multiple VR users. (III) Supporting smooth collaborative interaction: This thrust will focus on the algorithm design that leverages the VR content similarities and predictabilities that naturally emerge during collaborative interactions. (IV) Scalable system integration, implementation, evaluation, and deployment: This thrust will integrate Research Thrusts I through III into a holistic system, perform system-level optimizations, and evaluate it through lab experiments and real-world classroom deployment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无线网络上的虚拟现实(VR)可以同时为多个用户提供交互式和沉浸式体验,因此具有许多应用,特别是在基于VR的教育/培训中。然而,这种无线沉浸式服务中令人满意的个性化用户体验需要严格的性能要求,包括:(1)高速和高分辨率的全景图像渲染;(2)极低的延迟保证;以及(3)无缝的用户体验。除了上述要求外,协同用户体验还需要VR服务的可扩展性和公平性。现有的VR系统严重依赖于各种启发式设计,并且没有有效地利用VR内容的共性及其可预测性,这阻碍了它们的大规模部署。该项目旨在开发一个通过无线网络提供个性化和可扩展的协作VR体验的系统的理论基础和完整实现。该项目将集成机器学习、无线网络和移动的计算,以在商用移动的设备上实现高质量和可扩展的无线沉浸式应用。本项目的理论和实际应用将被整合到本科和研究生课程中,并将让K-12学生接触到最先进的无线和VR技术。(2)用于多个用户的VR内容之间的通用性,以实现多播;以及(3)VR内容的可预测性,以实现预取。拟议的研究将有助于和推进无线网络和虚拟现实领域的理论和面向系统的研究。该项目明确利用沉浸式VR应用和无线网络的独特特性,并提出以下四个相互依赖的研究方向:(I)处理网络和预测不确定性:该方向将研究算法设计,以优化个性化用户体验,同时考虑网络和视口预测的不确定性。(II)满足严格的沉浸式服务要求:这一目标将开发无线调度算法,为多个VR用户提供严格的沉浸式、个性化服务保证。(III)支持流畅的协作交互:这一重点将集中在算法设计上,该设计利用了协作交互过程中自然出现的VR内容相似性和可预测性。(IV)可扩展的系统集成、实施、评估和部署:该项目将把研究重点I至III整合到一个整体系统中,进行系统级优化,并通过实验室实验和现实世界的课堂部署进行评估。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhancing Quality of Experience for Collaborative Virtual Reality with Commodity Mobile Devices
Collaborative Mixed-Reality-Based Firefighter Training
基于混合现实的协作消防员培训
A Collaborative Augmented Reality Platform for Interactive and Immersive Education
用于交互式和沉浸式教育的协作增强现实平台
Virtual Reality-Based Gymnastics Visualization Using Real-Time Motion Capture Suit
使用实时动作捕捉服进行基于虚拟现实的体操可视化
Online Learning-Based Rate Selection for Wireless Interactive Panoramic Scene Delivery
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bin Li其他文献

The Asteroid Rotation Period Survey Using the China Near-Earth Object Survey Telescope (CNEOST)
中国近地天体巡天望远镜(CNEOST)小行星自转周期观测
  • DOI:
    10.3847/1538-3881/ab9a32
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ting-Shuo Yeh;Bin Li;Chan-Kao Chang;Haibin Zhao;Jianghui Ji;Zhongyi Lin;Winghuen Ip
  • 通讯作者:
    Winghuen Ip
Research on Path Planning of Mobile Robot Based on Dynamic Environment
基于动态环境的移动机器人路径规划研究
NAD+ attenuates experimental autoimmune encephalomyelitis through induction of CD11b+ gr-1+ myeloid-derived suppressor cells
NAD 通过诱导 CD11b gr-1 骨髓源性抑制细胞减轻实验性自身免疫性脑脊髓炎
  • DOI:
    10.1042/bsr20200353
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Jin-Li Wang;Bin Li;Guo-Jun Tan;Xiao-Li Gai;Jun-Na Xing;Jue-Qiong Wang;Mo-Yuan Quan;Ning Zhang;Li Guo
  • 通讯作者:
    Li Guo
In situ FT-IR investigation of CO oxidation on CuO/TiO2 catalysts
CuO/TiO2 催化剂上 CO 氧化的原位 FT-IR 研究
  • DOI:
    10.1016/j.catcom.2016.02.001
  • 发表时间:
    2016-03
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Changshun Deng;Meina Huang;Bin Li;Hongliang Zhang
  • 通讯作者:
    Hongliang Zhang
Synthesis, characterization of the bio-inspired diiron complexes and the catalytic activity for direct hydroxylation of aromatic compounds.
仿生二铁配合物的合成、表征以及芳香族化合物直接羟基化的催化活性。

Bin Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bin Li', 18)}}的其他基金

Collaborative Research: CNS Core: Medium: Foundations and Scalable Algorithms for Personalized and Collaborative Virtual Reality Over Wireless Networks
协作研究:CNS 核心:中:无线网络上个性化和协作虚拟现实的基础和可扩展算法
  • 批准号:
    2107080
  • 财政年份:
    2021
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Continuing Grant
NeTS: Small: Collaborative Research: Towards Adaptive and Efficient Wireless Computing Networks
NeTS:小型:协作研究:迈向自适应且高效的无线计算网络
  • 批准号:
    2152657
  • 财政年份:
    2021
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
CAREER: Wireless Collaborative Mixed Reality Networking: Foundations and Algorithms for Joint Communication, Computation, and Learning
职业:无线协作混合现实网络:联合通信、计算和学习的基础和算法
  • 批准号:
    2152658
  • 财政年份:
    2021
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Continuing Grant
CAREER: Wireless Collaborative Mixed Reality Networking: Foundations and Algorithms for Joint Communication, Computation, and Learning
职业:无线协作混合现实网络:联合通信、计算和学习的基础和算法
  • 批准号:
    1942383
  • 财政年份:
    2020
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Continuing Grant
NeTS: Small: Collaborative Research: Towards Adaptive and Efficient Wireless Computing Networks
NeTS:小型:协作研究:迈向自适应且高效的无线计算网络
  • 批准号:
    1815563
  • 财政年份:
    2018
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
NeTS: Small: Principles and Protocols for Traffic-Insensitive Performance in Wireless Networks
NeTS:小型:无线网络中流量不敏感性能的原理和协议
  • 批准号:
    1717108
  • 财政年份:
    2017
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
Design of Twinning Induced Plasticity (TWIP) Magnesium Alloys
孪晶诱导塑性 (TWIP) 镁合金的设计
  • 批准号:
    1635088
  • 财政年份:
    2016
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2230945
  • 财政年份:
    2023
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
  • 批准号:
    2406598
  • 财政年份:
    2023
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: SmartSight: an AI-Based Computing Platform to Assist Blind and Visually Impaired People
合作研究:中枢神经系统核心:小型:SmartSight:基于人工智能的计算平台,帮助盲人和视障人士
  • 批准号:
    2418188
  • 财政年份:
    2023
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
  • 批准号:
    2345339
  • 财政年份:
    2023
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-AoF: CNS Core: Small: Towards Scalable and Al-based Solutions for Beyond-5G Radio Access Networks
合作研究:NSF-AoF:CNS 核心:小型:面向超 5G 无线接入网络的可扩展和基于人工智能的解决方案
  • 批准号:
    2225578
  • 财政年份:
    2023
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Creating An Extensible Internet Through Interposition
合作研究:CNS核心:小:通过介入创建可扩展的互联网
  • 批准号:
    2242503
  • 财政年份:
    2023
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Adaptive Smart Surfaces for Wireless Channel Morphing to Enable Full Multiplexing and Multi-user Gains
合作研究:CNS 核心:小型:用于无线信道变形的自适应智能表面,以实现完全复用和多用户增益
  • 批准号:
    2343959
  • 财政年份:
    2023
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
  • 批准号:
    2343863
  • 财政年份:
    2023
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
  • 批准号:
    2341378
  • 财政年份:
    2023
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
  • 批准号:
    2409008
  • 财政年份:
    2023
  • 资助金额:
    $ 20.2万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了