Collaborative Research: High-Resolution Aerial Forest Mapping Infrastructure and Database to Support Forest and Disturbance Ecology Research

合作研究:支持森林和干扰生态学研究的高分辨率航空森林测绘基础设施和数据库

基本信息

  • 批准号:
    2152671
  • 负责人:
  • 金额:
    $ 80.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Forest inventories are critical resources for understanding biological patterns and processes, but they have traditionally required time-consuming ground-based surveys. Recent advances in small uncrewed aerial systems (sUAS, or “drones”) and artificial intelligence are enabling a new era of forest research in which individual trees can be mapped, measured, and identified to genus or species across broad areas without extensive ground surveys. Although the technology for low-cost drone-based forest mapping now exists, infrastructure to enable scientists to produce and access extensive forest maps is limiting. This project establishes and facilitates future expansion of a network of over 100 forest inventory plots of approximately 25 ha each. Fine-scale, broad-extent forest inventory data allows for new insight into the complex processes shaping forest communities and ecosystems. Understanding these dynamics is increasingly urgent as stressors such as droughts and high-severity wildfires drive dramatic shifts in forests–including conversion to non-forest vegetation–in the western U.S. and globally. Ecologists and forest managers require data on forest response to these novel conditions to develop management strategies, but the rate and magnitude of recent changes challenge traditional field-based data collection approaches. This project introduces drone-based forest mapping tools to the next generation of scientists via a Forest Ecology Drone Pilot Apprenticeship and via outreach events emphasizing underrepresented communities. It leverages existing investments in public cyberinfrastructure by NSF and trains scientists in its use for cloud-native research. It is demonstrating the relevance of the forest mapping infrastructure to forest management planning by mapping forests to support a multi-stakeholder forest restoration partnership. In recruiting staff and student participants, the project engages groups supporting underrepresented students and scholars, and the selection processes use holistic review and distance-traveled criteria.This project involves development of three complementary cyberinfrastructure innovations to support and extend the capacity of forest ecology and disturbance ecology research: (1) a scalable, reproducible, AI-enabled software workflow for processing imagery from low-cost drones into forest inventory data (e.g., maps of individual trees by size and genus or species); (2) a searchable, publicly accessible, extensible database of tree maps, initiated with 100, 25-ha maps aligned with forest inventory plot networks (including the NSF National Ecological Observatory Network, NEON) along important abiotic and disturbance history gradients; and (3) documentation and training, including virtual and in-person workshops, to enable researchers to produce and contribute their own data and analytical tools. The software workflow, which incorporates photogrammetry for 3D stand structure modeling and multi-view computer vision (via artificial neural networks) for taxonomic classification and rejection of false-positive tree detections, expands the forest survey extents achievable by scientists and resource managers by 100-fold. The project leverages CyVerse, one of NSF’s largest investments in research cyberinfrastructure, for data processing and data hosting. The resulting public forest inventory database supports cloud native research to improve models of forest pattern and process currently constrained by limited data. Open-source software development and project results are available at openforestobservatory.org.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
森林清查是了解生物模式和过程的关键资源,但传统上需要耗时的地面调查。小型无人驾驶航空系统(sUAS,或“无人机”)和人工智能的最新进展正在开启森林研究的新时代,无需进行广泛的地面调查,就可以在广阔的区域内对单个树木进行绘图、测量和识别属或物种。尽管现在已经存在基于无人机的低成本森林测绘技术,但使科学家能够制作和获取广泛森林地图的基础设施仍然有限。该项目建立并促进未来扩展由 100 多个森林清查地块组成的网络,每个地块面积约为 25 公顷。精细、广泛的森林清查数据可以让人们对塑造森林群落和生态系统的复杂过程有新的了解。随着干旱和严重野火等压力因素导致美国西部和全球森林发生巨大变化(包括向非森林植被转变),了解这些动态变得越来越紧迫。生态学家和森林管理者需要有关森林对这些新条件的反应的数据来制定管理策略,但最近变化的速度和幅度对传统的基于实地的数据收集方法提出了挑战。该项目通过森林生态无人机飞行员学徒计划和强调代表性不足社区的外展活动,向下一代科学家介绍基于无人机的森林测绘工具。它利用 NSF 对公共网络基础设施的现有投资,并培训科学家将其用于云原生研究。它通过绘制森林地图来支持多方利益相关者的森林恢复伙伴关系,展示了森林地图基础设施与森林管理规划的相关性。在招募工作人员和学生参与者时,该项目吸引了支持代表性不足的学生和学者的团体,并且选择过程使用整体审查和远距离旅行标准。该项目涉及开发三个互补的网络基础设施创新,以支持和扩展森林生态学和干扰生态学研究的能力:(1)一个可扩展、可重复、支持人工智能的软件工作流程,用于处理从低成本无人机进入森林的图像 库存数据(例如,按大小和属或物种划分的单棵树的地图); (2) 一个可搜索、可公开访问、可扩展的树图数据库,以 100 个 25 公顷的地图为基础,与沿着重要的非生物和干扰历史梯度的森林清查图网络(包括 NSF 国家生态观测站网络,NEON)对齐; (3) 记录和培训,包括虚拟和现场研讨会,使研究人员能够制作和贡献自己的数据和分析工具。该软件工作流程结合了用于 3D 林分结构建模的摄影测量和用于分类学分类和拒绝误报树木检测的多视图计算机视觉(通过人工神经网络),将科学家和资源管理者可实现的森林调查范围扩大了 100 倍。该项目利用 CyVerse(NSF 在研究网络基础设施方面最大的投资之一)进行数据处理和数据托管。由此产生的公共森林清单数据库支持云原生研究,以改进目前受有限数据限制的森林格局和过程模型。开源软件开发和项目结果可在 openforestobservatory.org 上获取。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Derek Young其他文献

Proceedings of the Workshop on 3D Geometry Generation for Scientific Computing
科学计算 3D 几何生成研讨会论文集
  • DOI:
    10.1109/wacvw60836.2024.00088
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marissa Ramirez de Chanlatte;Phillip Colella;Trevor Darrell;Alexandra Katherine Carlson;Peter H. N. de With;Huayu Deng;Shanyan Guan;James Hays;Tim Houben;Thomas Huisman;Nikita Jaipuria;Hans Johansen;Shuja Khalid;Akshay Krishnan;Chuming Li;M. Pisarenco;Amit Raj;Frank Rudzicz;Tim J. Schoonbeek;Sandhya Sridhar;Nathan Tseng;F. V. D. Sommen;Chen Wang;Yunbo Wang;Tong Wu;Xiaokang Yang;Jiawei Yao;Derek Young;Xianling Zhang
  • 通讯作者:
    Xianling Zhang
A framework for incorporating insurance in critical infrastructure cyber risk strategies
将保险纳入关键基础设施网络风险策略的框架
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Derek Young;Juan Lopez;Mason Rice;Benjamin W. P. Ramsey;R. McTasney
  • 通讯作者:
    R. McTasney
Classifying geospatial objects from multiview aerial imagery using semantic meshes
使用语义网格对多视图航空图像中的地理空间对象进行分类
  • DOI:
    10.48550/arxiv.2405.09544
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Russell;Ben Weinstein;David Wettergreen;Derek Young
  • 通讯作者:
    Derek Young
Thermodynamic and turbomachinery analysis of a hybrid electric organic Rankine vapor compression system
混合电动有机朗肯蒸汽压缩系统的热力学及涡轮机械分析
  • DOI:
    10.1016/j.apenergy.2025.125554
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    11.000
  • 作者:
    Bennett Platt;Derek Young;Todd Bandhauer
  • 通讯作者:
    Todd Bandhauer
Data center sustainability: The role of flexible fuel CCHP in mitigating grid emissions and power constraints
数据中心的可持续性:灵活燃料冷热电联产在减少电网排放和电力限制方面的作用
  • DOI:
    10.1016/j.enconman.2024.119455
  • 发表时间:
    2025-02-15
  • 期刊:
  • 影响因子:
    10.900
  • 作者:
    Taylor Stoll;Derek Young;Todd Bandhauer
  • 通讯作者:
    Todd Bandhauer

Derek Young的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 80.48万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
  • 批准号:
    2335568
  • 财政年份:
    2024
  • 资助金额:
    $ 80.48万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
  • 批准号:
    2335569
  • 财政年份:
    2024
  • 资助金额:
    $ 80.48万
  • 项目类别:
    Standard Grant
Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
  • 批准号:
    2323649
  • 财政年份:
    2024
  • 资助金额:
    $ 80.48万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325312
  • 财政年份:
    2024
  • 资助金额:
    $ 80.48万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
  • 批准号:
    2335570
  • 财政年份:
    2024
  • 资助金额:
    $ 80.48万
  • 项目类别:
    Standard Grant
Collaborative Research: GreenFjord-FIBER, Observing the Ice-Ocean Interface with Exceptional Resolution
合作研究:GreenFjord-FIBER,以卓越的分辨率观测冰海界面
  • 批准号:
    2338503
  • 财政年份:
    2024
  • 资助金额:
    $ 80.48万
  • 项目类别:
    Standard Grant
Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
  • 批准号:
    2323648
  • 财政年份:
    2024
  • 资助金额:
    $ 80.48万
  • 项目类别:
    Standard Grant
Collaborative Research: Four-Dimensional (4D) Investigation of Tropical Waves Using High-Resolution GNSS Radio Occultation from Strateole2 Balloons
合作研究:利用 Strateole2 气球的高分辨率 GNSS 无线电掩星对热带波进行四维 (4D) 研究
  • 批准号:
    2402729
  • 财政年份:
    2024
  • 资助金额:
    $ 80.48万
  • 项目类别:
    Continuing Grant
Collaborative Research: GreenFjord-FIBER, Observing the Ice-Ocean Interface with Exceptional Resolution
合作研究:GreenFjord-FIBER,以卓越的分辨率观测冰海界面
  • 批准号:
    2338502
  • 财政年份:
    2024
  • 资助金额:
    $ 80.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了