Equidistribution and Arithmetic Dynamics
均匀分配和算术动力学
基本信息
- 批准号:2152935
- 负责人:
- 金额:$ 2.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant will provide support for participants to attend a week-long conference on Equidistribution and Arithmetic Dynamics that will be held at Oklahoma State University during June 2022. The conference will consist of equal parts dissemination and education; that is, it will offer both a discussion of current research, and the opportunity for education in the area, bringing participants to the forefront of current techniques and research. Besides the daily plenary presentations, this will be done by including mini-courses and problem sessions for earlier career researchers and graduate students, and a particular effort will be made to recruit women and participants from historically underrepresented groups.The topic of equidistribution is classical in Number Theory. However, there have been many fundamental advances in the study of distribution for algebraic numbers, and more generally, for points of small height in various number theoretic settings, during the latest two decades. Thus, a conference dedicated to this circle of problems is both timely and necessary. It will summarize major achievements, and will also facilitate exchange of ideas and methods between various directions of research in this rapidly developing area. There will be several problem sessions and discussion groups that will help to compile a list of problems and set possible approaches to their solutions. This conference will greatly stimulate future progress and collaboration on equidistribution problems between mathematicians from different fields and backgrounds. For more information, see the conference website https://cas.okstate.edu/department_of_mathematics/department_of_mathematics_ead.html.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该补助金将为参与者提供支持,参加将于2022年6月在俄克拉荷马州州立大学举行的为期一周的Equidistribution和算术动态会议。会议将包括平等的部分传播和教育;也就是说,它将提供目前的研究讨论,并在该地区的教育机会,使与会者到目前的技术和研究的最前沿。除了每天的全体会议报告,这将通过包括小型课程和早期职业研究人员和研究生的问题会议来完成,并将特别努力招募女性和来自历史上代表性不足的群体的参与者。然而,在最近的二十年里,代数数的分布研究取得了许多根本性的进展,更一般地说,在各种数论环境中,对于小高度点的分布研究也取得了许多根本性的进展。因此,专门讨论这一系列问题的会议是及时和必要的。它将总结主要成就,并将促进在这一迅速发展的领域的各种研究方向之间的思想和方法的交流。将有几个问题会议和讨论小组,这将有助于汇编一份问题清单,并确定解决问题的可能方法。这次会议将极大地促进来自不同领域和背景的数学家之间在等分布问题上的未来进展和合作。欲了解更多信息,请参阅会议网站https://cas.okstate.edu/department_of_mathematics/department_of_mathematics_ead.html.This奖项反映了NSF的法定使命,并已被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Fili其他文献
A metric of mutual energy and unlikely intersections for dynamical systems
- DOI:
- 发表时间:
2017-08 - 期刊:
- 影响因子:0
- 作者:
Paul Fili - 通讯作者:
Paul Fili
On the non-Archimedean metric Mahler measure
关于非阿基米德度量马勒测度
- DOI:
10.1016/j.jnt.2008.12.009 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Paul Fili;C. L. Samuels - 通讯作者:
C. L. Samuels
Quantitative height bounds under splitting conditions
分裂条件下的定量高度界限
- DOI:
10.1090/tran/7656 - 发表时间:
2015 - 期刊:
- 影响因子:1.3
- 作者:
Paul Fili;Lukas Pottmeyer - 通讯作者:
Lukas Pottmeyer
On the heights of totally p-adic numbers
- DOI:
10.5802/jtnb.861 - 发表时间:
2012-10 - 期刊:
- 影响因子:0
- 作者:
Paul Fili - 通讯作者:
Paul Fili
Stochastic Equidistribution and Generalized Adelic Measures
随机均衡分布和广义 Adelic 测度
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
J. Doyle;Paul Fili;Bella Tobin - 通讯作者:
Bella Tobin
Paul Fili的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Moduli Spaces and Galois Theory in Arithmetic Dynamics
算术动力学中的模空间和伽罗瓦理论
- 批准号:
2302394 - 财政年份:2023
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
Equidistribution in Arithmetic: Dynamics, Geometry and Spectra
算术中的均匀分布:动力学、几何和谱
- 批准号:
2302592 - 财政年份:2023
- 资助金额:
$ 2.92万 - 项目类别:
Standard Grant
Some problems in arithmetic dynamics and related areas
算术动力学及相关领域的一些问题
- 批准号:
RGPIN-2018-03770 - 财政年份:2022
- 资助金额:
$ 2.92万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Geometry and Dynamics over Finite Fields
有限域上的算术几何和动力学
- 批准号:
557298-2021 - 财政年份:2022
- 资助金额:
$ 2.92万 - 项目类别:
Postdoctoral Fellowships
Unlikely intersections in arithmetic dynamics
算术动力学中不太可能的交叉点
- 批准号:
RGPIN-2018-03690 - 财政年份:2022
- 资助金额:
$ 2.92万 - 项目类别:
Discovery Grants Program - Individual
Unlikely intersections in arithmetic dynamics
算术动力学中不太可能的交叉点
- 批准号:
RGPIN-2018-03690 - 财政年份:2021
- 资助金额:
$ 2.92万 - 项目类别:
Discovery Grants Program - Individual
Some problems in arithmetic dynamics and related areas
算术动力学及相关领域的一些问题
- 批准号:
RGPIN-2018-03770 - 财政年份:2021
- 资助金额:
$ 2.92万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Geometry and Dynamics over Finite Fields
有限域上的算术几何和动力学
- 批准号:
557298-2021 - 财政年份:2021
- 资助金额:
$ 2.92万 - 项目类别:
Postdoctoral Fellowships
Applications of arithmetic dynamics to potential density
算术动力学在势密度中的应用
- 批准号:
RGPIN-2016-03632 - 财政年份:2021
- 资助金额:
$ 2.92万 - 项目类别:
Discovery Grants Program - Individual
Some problems in arithmetic dynamics and related areas
算术动力学及相关领域的一些问题
- 批准号:
RGPIN-2018-03770 - 财政年份:2020
- 资助金额:
$ 2.92万 - 项目类别:
Discovery Grants Program - Individual