EAGER: Develop Robust Light-Scattering Computational Capability Based on the Method of Separation of Variables in Spheroidal Coordinates for Small-to-Large Spheroids

EAGER:基于从小到大球体的球体坐标中的变量分离方法,开发鲁棒的光散射计算能力

基本信息

  • 批准号:
    2153239
  • 负责人:
  • 金额:
    $ 19.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-01 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

Dust aerosols affect global climate by partially absorbing and reflecting incoming sunlight and heat energy emitted by the atmosphere and the surface. The optical properties of dust particles are critical to reducing uncertainties in the current knowledge of the role of dust aerosols in the climate system, and thus are important for predicting future climate. The dust particle optical properties are also fundamental for inferring dust aerosol characteristics from space-borne and ground-based remote sensing observations. Dust particles are almost exclusively nonspherical. It has been extensively demonstrated that the spheroidal particle shape model represents a quantum leap forward, compared to the spherical model, for computing the optical properties of nonspherical particles. At present, the optical properties of small-to-large particles can be computed only for spheres. There is a pressing need to have an exact and robust computational capability to compute the optical properties of spheroidal particles. Leveraging advances in computational mathematics, advances in electromagnetic scattering theories, and modern computer technologies and computer coding techniques, this project aims to develop a novel program to compute the optical properties of spheroidal particle in the small-to-large particle size range. Because many bacteria, microweeds, oceanic particles, and interstellar dust particles have approximately spheroidal shapes, the outcome of this project will also find extensive applications in climate science (particularly the radiative energy budget in the climate system), remote sensing, industry, bio-optics, oceanic optics, astrophysics, planetary sciences, and other fields beyond atmospheric sciences. Because this project focuses on a major unsolved interdisciplinary problem and because of significant challenges, particularly from the perspective of computational electromagnetics and mathematics, this project is exploratory but potentially transformative, i.e., “high risk – high payoff”. In addition to its scientific merit, this project contains an educational component to train an early-career researcher in the interdisciplinary area mentioned above. This project aims to solve light scattering by a spheroid in spheroidal coordinates. Although solving the electromagnetic wave equation via the method of separation of variables in spheroid coordinates has been explored, the previously developed models are applicable only to particles that are small with respect to the incident wavelength and have little practical use. The major challenge encountered by the previous effort is numerical instability of spheroidal harmonic functions. This project will seek to achieve numerical stability of spheroidal harmonic functions by using advanced algorithms, such as expressing spheroidal functions in terms of the Wigner-d function. The key to computing spheroidal functions is to find eigenvalues of corresponding spheroidal equations. The radial and angular spheroidal equations are of the Sturm-Liouville type. The eigenvalues will be calculated by the invariant-imbedding method, which is expected to be numerically stable and accurate. Thus, the spheroidal functions are expected to be accurate even with extreme parameters. The overarching goal of this project is to develop a numerically stable capability for accurately computing the optical properties of a spheroid beyond the currently applicable particle size and aspect ratio ranges of other existing computational capabilities, such as the discrete dipole approximation method (DDA), the finite-difference time domain (FDTD) method, the extended boundary condition method (EBCM), and the invariant imbedding T-matrix method (IITM).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
沙尘气溶胶通过部分吸收和反射入射的太阳光以及大气和地表释放的热能来影响全球气候。沙尘粒子的光学特性对于减少目前关于沙尘气溶胶在气候系统中作用的知识中的不确定性至关重要,因此对于预测未来气候非常重要。尘埃粒子的光学特性也是从空间和地面遥感观测推断尘埃气溶胶特性的基础。尘埃粒子几乎都是非球形的。它已被广泛证明,球形粒子形状模型代表了一个量子飞跃相比,球形模型,用于计算非球形粒子的光学性质。目前,从小到大的粒子的光学性质只能计算球体。有一个迫切需要有一个准确的和强大的计算能力来计算球形粒子的光学性质。本项目旨在利用计算数学的发展、电磁散射理论的发展、现代计算机技术和计算机编码技术,开发一种新的程序来计算小到大颗粒尺寸范围内的球形颗粒的光学性质。由于许多细菌、微藻、海洋颗粒和星际尘埃颗粒具有近似球形的形状,因此该项目的成果也将在气候科学(特别是气候系统中的辐射能量预算)、遥感、工业、生物光学、海洋光学、天体物理学、行星科学和大气科学以外的其他领域中得到广泛应用。由于该项目侧重于一个重大的未解决的跨学科问题,并且由于重大挑战,特别是从计算电磁学和数学的角度来看,该项目是探索性的,但可能具有变革性,即,“高风险高回报”除了其科学价值外,该项目还包含一个教育部分,以培训上述跨学科领域的早期职业研究人员。本计画的目的是在球坐标系下求解光散射问题。虽然已经探索了通过在椭球坐标系中分离变量的方法来求解电磁波方程,但是先前开发的模型仅适用于相对于入射波长较小的粒子,并且几乎没有实际用途。以前的努力所遇到的主要挑战是数值不稳定性的球谐函数。本计画将利用先进的演算法,例如以Wigner-d函数来表示球函数,以达到球调和函数的数值稳定性。计算球函数的关键是求相应球方程的特征值。径向和角向椭球方程是Sturm-Liouville型的。本征值将通过不变量嵌入法计算,预计该方法在数值上稳定且准确。因此,即使具有极端参数,也期望球形函数是准确的。该项目的首要目标是开发一种数值稳定的能力,用于精确计算球体的光学特性,超出当前适用的其他现有计算能力的颗粒尺寸和纵横比范围,例如离散偶极子近似法(DDA),时域有限差分法(FDTD),扩展边界条件法(EBCM),该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ping Yang其他文献

Characterization of freeze–thaw effects within clay by 3D X-ray Computed Tomography
通过 3D X 射线计算机断层扫描表征粘土内的冻融效应
  • DOI:
    10.1016/j.coldregions.2018.01.001
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Shengfu Wang;Ping Yang;Zhaohui Joey Yang
  • 通讯作者:
    Zhaohui Joey Yang
A pixel gradient-based adaptive interpolation filter for multiple view synthesis
用于多视图合成的基于像素梯度的自适应插值滤波器
SREBP-2, a new target of metformin
SREBP-2,二甲双胍的新靶点
  • DOI:
    10.2147/dddt.s190094
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fengxia Zhang;Wenxiu Sun;Jianbo Chen;Lusheng Jiang;Ping Yang;Yufang Huang;Aihua Gong;Shudong Liu;Shizhan Ma
  • 通讯作者:
    Shizhan Ma
Abstract 4826: International Lung Cancer Consortium: Pooled analysis of previous lung diseases and lung cancer risk
摘要 4826:国际肺癌联盟:既往肺部疾病和肺癌风险的汇总分析
  • DOI:
    10.1158/1538-7445.am10-4826
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    D. Brenner;P. Boffetta;E. Duell;H. Bickeböller;A. Rosenberger;J. Muscat;Ping Yang;E. Wichmann;A. Schwartz;A. Tjønneland;S. Friis;L. LeMarchand;Zuo‐Feng Zhang;P. Lazarus;J. Field;J. McLaughlin;J. Wiencke;M. Neri;Q. Lan;I. Orlow;Bernard J Park;R. Hung
  • 通讯作者:
    R. Hung
A novel heterogeneous hybrid by incorporation of Nb2O5 microspheres and reduced graphene oxide for photocatalytic H2 evolution under visible light irradiation
结合 Nb2O5 微球和还原氧化石墨烯的新型异质杂化物,用于可见光照射下光催化析氢
  • DOI:
    10.1039/c5ra05348j
  • 发表时间:
    2015-05
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zongkuan Yue;Dongmei Chu;Hui Huang;Jie Huang;Ping Yang;Yukou Du;Mingshan Zhu;Cheng Lu
  • 通讯作者:
    Cheng Lu

Ping Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ping Yang', 18)}}的其他基金

CyberCorps Scholarship for Service: Expanding and Strengthening the National Cybersecurity Workforce
Cyber​​Corps 服务奖学金:扩大和加强国家网络安全劳动力
  • 批准号:
    2146212
  • 财政年份:
    2022
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
Development of Community Light Scattering Computational Capabilities
社区光散射计算能力的发展
  • 批准号:
    1826936
  • 财政年份:
    2018
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
CICI: RSARC: Infrastructure Support for Securing Large-Scale Scientific Workflows
CICI:RSARC:确保大规模科学工作流程安全的基础设施支持
  • 批准号:
    1738929
  • 财政年份:
    2017
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Systematic Evaluation and Further Improvement of Present Broadband Radiative Transfer Modeling Capabilities
合作研究:现有宽带辐射传输建模能力的系统评估和进一步改进
  • 批准号:
    1632209
  • 财政年份:
    2016
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Inferring Marine Particle Properties from Polarized Volume Scattering Functions
合作研究:从偏振体散射函数推断海洋颗粒特性
  • 批准号:
    1459180
  • 财政年份:
    2015
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Development of Rigorous Computational Capabilities Based on the Invariant Imbedding Principle for the Simulation of the Optical Properties of Dust and Ice Crystals
基于不变嵌入原理的严格计算能力的发展,用于模拟灰尘和冰晶的光学特性
  • 批准号:
    1338440
  • 财政年份:
    2013
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Study Dust Optical and Radiative Properties Using Optimal Morphological Sets
使用最佳形态集研究灰尘光学和辐射特性
  • 批准号:
    0803779
  • 财政年份:
    2008
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
CAREER: Investigation of the Scattering and Radiative Properties of Ice and Mixed-Phase Clouds
职业:研究冰和混合相云的散射和辐射特性
  • 批准号:
    0239605
  • 财政年份:
    2003
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant

相似海外基金

Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Studentship
Conference: Transforming Trajectories for Women of Color in Tech: A Meeting Series to Develop a Systemic Action Plan
会议:改变有色人种女性在科技领域的轨迹:制定系统行动计划的会议系列
  • 批准号:
    2333305
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
CAREER:HCC: Using Virtual Reality Gaming to Develop a Predictive Simulation of Human-Building Interactions: Behavioral and Emotional Modeling for Public Space Design
职业:HCC:使用虚拟现实游戏开发人类建筑交互的预测模拟:公共空间设计的行为和情感建模
  • 批准号:
    2339999
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
Develop novel-processing for the use of paludiculture biomass as an alternative feedstock for regenerative pulp production.
开发利用沼生生物质作为再生纸浆生产替代原料的新工艺。
  • 批准号:
    10102591
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Investment Accelerator
Turning defects into allies to develop intrinsic resistance to hydrogen-induced fractures (ResistHfracture)
化缺陷为盟友,增强对氢致断裂的内在抵抗力 (ResistHfracture)
  • 批准号:
    EP/Y037219/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Research Grant
'Leaders Like Us': Co-designing a framework to develop young physical activity leader programmes for girls from underserved groups
“像我们这样的领导者”:共同设计一个框架,为来自服务不足群体的女孩制定年轻的体育活动领导者计划
  • 批准号:
    MR/Z503976/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Research Grant
Conference: A Virtual Workshop for Two-Year College Geoscience Faculty to Develop National Science Foundation Grant Proposals
会议:两年制大学地球科学教师制定国家科学基金会拨款提案的虚拟研讨会
  • 批准号:
    2349758
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
  • 批准号:
    2427215
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Develop the novel targets and immunotherapy-combination agents through targeting nuclear transport receptor
以核转运受体为靶点开发新靶点和免疫治疗联合药物
  • 批准号:
    24K13116
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Develop a Hybrid Adaptive Particle-Field Simulation Method for Solutions of Macromolecules and a New Computational Chemistry Course for Lower-Division Undergraduates
职业:开发用于大分子解决方案的混合自适应粒子场模拟方法以及低年级本科生的新计算化学课程
  • 批准号:
    2337602
  • 财政年份:
    2024
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了