CRII: Interpretable Influence Propagating and Blocking on Graphs
CRII:图上可解释的影响传播和阻塞
基本信息
- 批准号:2153369
- 负责人:
- 金额:$ 17.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As networks including virtual (e.g., social networks) and physically grounded (e.g., transportation networks) increase in complexity, the need to understanding the spread of network influence is crucial. Influence in networks has been the subject of increasing attention among researchers due to its far-reaching social and commercial implications. For instance, the objective of information propagation or viral marketing is to identify the most prominent trend setters capable of influencing vast numbers of others, while the primary objective of epidemiology is to ascertain who is most likely to spread a disease, which aids in the development of vaccine and quarantine regulations. This project will develop novel tools to analyze how the spreading network's structure and initial state maximize the influence flow, and then investigate policy options for controlling the flows. The primary innovation of this project will be its ability to learn the complex relationship between flows and the geometric structure of graphs and extract understandable rules for decision-makers. The main challenge is the huge number of combinations of variables combined across structures and attributes to alter influence flows. This project advocates a unique paradigm for learning interpretable representations of influence flow over graphs, with a particular emphasis on disentangling the combinatorial limitations imposed by both the graph's geometric structure and seed selection. This research aims at developing a new framework that boosts accuracy and interpretability while decoupling the influence process. The difficulty of developing interpretable models is compounded by the specific characteristics of influence modeling, which include complex tangled topological links, insufficient data, and confluence effects. The investigator will use context-aware constraints and complementing observations to narrow the search and determine the effect source. The investigator will perform an in-depth assessment of effective and efficient control policies to improve influence propagation or blocking. This project will address the following three fundamental research issues: learning expository topological dependence of influence; Learning the influence cascade and the sources; and learning to control the influence flows. The proposed model will determine the optimal seeds that minimize future influence based on the currently influenced region, which requires modeling the interaction of numerous graph-dependent elements. According to thermodynamics' second law, the flow rate is determined by the energy levels within the system, which motivates us to examine graph entropy notions further to provide a more robust assessment of them. The investigator will employ global sensitivity analysis and perturbation matrix theory to choose the smallest yet most critical and robust set.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
作为包括虚拟(例如,社交网络)和物理接地(例如, 随着交通运输网络的复杂性增加,了解网络影响力的传播至关重要。网络中的影响力因其深远的社会和商业影响而日益受到研究者的关注。例如,信息传播或病毒式营销的目标是确定能够影响大量其他人的最突出的趋势制定者,而流行病学的主要目标是确定谁最有可能传播疾病,这有助于制定疫苗和检疫条例。本项目将开发新的工具来分析传播网络的结构和初始状态如何使影响流最大化,然后研究控制影响流的政策选择。该项目的主要创新将是它能够学习流之间的复杂关系和图形的几何结构,并为决策者提取可理解的规则。主要的挑战是大量跨结构和属性的变量组合,以改变影响力流。该项目倡导一种独特的范式,用于学习图上影响流的可解释表示,特别强调解开图的几何结构和种子选择所施加的组合限制。本研究旨在开发一个新的框架,提高准确性和可解释性,同时解耦的影响过程。开发可解释的模型的难度由于影响建模的具体特征而变得更加复杂,这些特征包括复杂的拓扑链接、数据不足和汇流效应。研究者将使用情境感知约束和补充观察来缩小搜索范围并确定影响源。调查员将对有效和高效的控制政策进行深入评估,以改善影响传播或阻止。本计画将探讨以下三个基本研究议题:学习影响力的暂时性拓扑相依性;学习影响力级联与影响力来源;以及学习控制影响力流。所提出的模型将确定最佳的种子,最大限度地减少未来的影响的基础上,目前受影响的地区,这需要建模的许多图形相关的元素的相互作用。根据热力学第二定律,流量由系统内的能级决定,这促使我们进一步研究图熵概念,以提供更可靠的评估。研究人员将采用全球敏感性分析和扰动矩阵理论,以选择最小但最关键和鲁棒的set.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Understanding Influence Maximization via Higher-Order Decomposition
- DOI:10.1137/1.9781611977653.ch86
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Zonghan Zhang;Zhiqian Chen
- 通讯作者:Zonghan Zhang;Zhiqian Chen
Memetic Algorithms for Spatial Partitioning Problems
空间分区问题的模因算法
- DOI:10.1145/3544779
- 发表时间:2023
- 期刊:
- 影响因子:1.9
- 作者:Biswas, Subhodip;Chen, Fanglan;Chen, Zhiqian;Lu, Chang-Tien;Ramakrishnan, Naren
- 通讯作者:Ramakrishnan, Naren
Bridging the Gap between Spatial and Spectral Domains: A Unified Framework for Graph Neural Networks
- DOI:10.1145/3627816
- 发表时间:2021-07
- 期刊:
- 影响因子:16.6
- 作者:Zhiqian Chen;Fanglan Chen;Lei Zhang;Taoran Ji;Kaiqun Fu;Liang Zhao;Feng Chen;Lingfei Wu;
- 通讯作者:Zhiqian Chen;Fanglan Chen;Lei Zhang;Taoran Ji;Kaiqun Fu;Liang Zhao;Feng Chen;Lingfei Wu;
Early Forecasting of the Impact of Traffic Accidents Using a Single Shot Observation
使用单次观测早期预测交通事故的影响
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Meng, Guangyu;Jiang, Qisheng;Fu, Kaiqun;Lin, Beiyu;Lu, Chang-Tien;Chen Zhiqian
- 通讯作者:Chen Zhiqian
Blocking Influence at Collective Level with Hard Constraints (Student Abstract)
- DOI:10.1609/aaai.v36i11.21694
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Zonghan Zhang;Subhodip Biswas;Fanglan Chen;Kaiqun Fu;Taoran Ji;Chang-Tien Lu;Naren Ramakrishnan;Zhiqian Chen
- 通讯作者:Zonghan Zhang;Subhodip Biswas;Fanglan Chen;Kaiqun Fu;Taoran Ji;Chang-Tien Lu;Naren Ramakrishnan;Zhiqian Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhiqian Chen其他文献
Theoretical Investigation on Formation Energy, Elastic and Interfacial Properties of Refining Phase Al3(Zr, Sc) in Al Alloys
铝合金中细化相Al3(Zr,Sc)的形成能、弹性及界面性能的理论研究
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0.7
- 作者:
Chunmei Li;Xianquan Jiang;Nanpu Cheng;Jianfeng Tang;Zhiqian Chen - 通讯作者:
Zhiqian Chen
u Electrochemical hydrogen property improved in nano-structured perovskite oxide LaFeO3 for Ni/MH battery /u
用于 Ni/MH 电池的纳米结构钙钛矿氧化物 LaFeO3 改善电化学氢性能
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:3.2
- 作者:
Qiang Wang;Gang Deng;Zhiqian Chen;Yungui Chen;Nanpu Cheng - 通讯作者:
Nanpu Cheng
Deep diffusion-based forecasting of COVID-19 by incorporating network-level mobility information
通过结合网络级移动信息对 COVID-19 进行基于深度扩散的预测
- DOI:
10.1145/3487351.3488334 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Padmaksha Roy;Shailik Sarkar;Subhodip Biswas;Fanglan Chen;Zhiqian Chen;Naren Ramakrishnan;Chang - 通讯作者:
Chang
Design of a bi-level PSO based modular neural network for multi-step time series prediction
基于双层 PSO 的多步时间序列预测模块化神经网络设计
- DOI:
10.1007/s10489-024-05638-0 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Wenjing Li;Yonglei Liu;Zhiqian Chen - 通讯作者:
Zhiqian Chen
Implicit graph neural network for deep graph transformation
用于深度图变换的隐式图神经网络
- DOI:
10.1007/s10115-025-02468-5 - 发表时间:
2025-05-26 - 期刊:
- 影响因子:3.100
- 作者:
Lei Zhang;Qisheng Zhang;Zhiqian Chen;Yanshen Sun;Chang-Tien Lu;Liang Zhao - 通讯作者:
Liang Zhao
Zhiqian Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
- 批准号:
24K15089 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Toward next-generation flexible and interpretable deep learning: A novel evolutionary wide dendritic learning
迈向下一代灵活且可解释的深度学习:一种新颖的进化广泛的树突学习
- 批准号:
23K24899 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Deciphering electrophysiological Alzheimer's Disease biomarkers for early diagnosis using interpretable deep learning
使用可解释的深度学习破译电生理阿尔茨海默病生物标志物以进行早期诊断
- 批准号:
24K18602 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Learning Generalizable and Interpretable Embodied AI with Human Priors
职业:利用人类先验学习可概括和可解释的具体人工智能
- 批准号:
2339769 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
CAREER: Towards Safe and Interpretable Autonomy in Healthcare
职业:迈向医疗保健领域安全且可解释的自主权
- 批准号:
2340139 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
22-BBSRC/NSF-BIO - Interpretable & Noise-robust Machine Learning for Neurophysiology
22-BBSRC/NSF-BIO - 可解释
- 批准号:
BB/Y008758/1 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Research Grant
UKRI/BBSRC-NSF/BIO: Interpretable and Noise-Robust Machine Learning for Neurophysiology
UKRI/BBSRC-NSF/BIO:用于神经生理学的可解释且抗噪声的机器学习
- 批准号:
2321840 - 财政年份:2023
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
CAREER: Interpretable and Robust Machine Learning Models: Analysis and Algorithms
职业:可解释且稳健的机器学习模型:分析和算法
- 批准号:
2239787 - 财政年份:2023
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
AIPPN: Interpretable AI enabled Molecular Identification Pipeline for Plant-parasitic Nematodes
AIPPN:可解释的人工智能支持植物寄生线虫分子识别管道
- 批准号:
10077647 - 财政年份:2023
- 资助金额:
$ 17.4万 - 项目类别:
Collaborative R&D
Interpretable data-driven building energy analytics
可解释的数据驱动的建筑能源分析
- 批准号:
2891094 - 财政年份:2023
- 资助金额:
$ 17.4万 - 项目类别:
Studentship














{{item.name}}会员




