CAS: Prodigious 2- and 3-Dimensional Organic Electron Acceptors via Strategic Cyclizations with Perfluoro Substituents

CAS:通过全氟取代基的策略环化获得巨大的 2 维和 3 维有机电子受体

基本信息

  • 批准号:
    2153922
  • 负责人:
  • 金额:
    $ 49.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

With the support of the Chemical Structure, Dynamics, and Mechanisms B (CSDM-B) Program in the Division of Chemistry, Dr. Olga Boltalina of Colorado State University is studying efficient methods for controlled addition of (poly)fluorinated carbacycles to polycyclic aromatic hydrocarbons (PAHs) to expand their conjugated systems, which may result in the critical enhancement of charge transport, thermal stability, resistance to photooxidation, and hence, longer device lifetimes; favorable morphology and electronic properties for photoinduced charge generation in donor-acceptor blends. The project is anticipated to impact material design beyond electronics: liquid crystals, agrochemicals, photonics, chiroptical materials, spintronics, medical imaging with fluorinated compounds (F-MRI, PET) and pharmaceuticals. Other broader societal benefits include the project's contribution to potentially transformational technological advances in high-performing organic acceptors with superior air-, moisture-, light-, and thermal stability that will be integrated into low-cost, efficient, sustainable, and durable devices, including organic field effect transistors, organic light-emitting devices and solar cells that can be building- or vehicle-integrated, thereby visibly increasing the use and lowering costs of renewable energy sources in everyday life. Dr. Boltalina aims to combine cutting-edge research with educational and professional development program for postgraduate students and summer research minority- and other underrepresented-group chemistry majors by involving them in national and international collaborative work and providing them with the skill sets that they need for successful careers from academia to industry.The project will deploy an arsenal of fluorine chemistry methods to design, synthesize and test the charge mobility of new n-type organofluorine semiconductors. Commercially available PAHs and perfluoroalkyl (benzyl) iodides will be used in one-pot reactions to promote the addition of perfluorinated carbacycles and subsequent reductive defluorination leading to aromatic or non-aromatic six-, five- or even seven-membered fluorinated rings on PAHs. Systematic experimental and computational studies of these new transformations are expected to improve fundamental understanding of chemical reaction pathways, to help optimize reaction selectivity and overall efficiency. Charge transport data will be used to determine the specific roles of fluorocarbacycles in the facilitation of charge mobility of highly ordered organofluorine semiconductors. The effects of increased electron affinity and greater solid-state ordering on functional enhancements of these materials as n-type semiconductors, p-dopants, and self-assembled monolayers will be explored. New types of (poly)fluorinated PAH building blocks that had been inaccessible by other methods may well become readily available to the broader synthetic community for the utilization of fluorine chemistry in covalent organic frameworks, biosensing, fluorescent dyes, and electronic materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学结构、动力学和机理B(CSDM-B)项目的支持下,科罗拉多州立大学的Olga Boltalina博士正在研究将(多)氟碳环可控加成到多环芳烃(PAH)中以扩大其共轭体系的有效方法,这可能导致电荷传输、热稳定性、抗光氧化性、因此具有更长的器件寿命;在供体-受体共混物中产生光诱导电荷的有利形态和电子性质。该项目预计将影响电子产品以外的材料设计:液晶,农用化学品,光子学,手性材料,自旋电子学,含氟化合物(F-MRI,PET)和药物的医学成像。其他更广泛的社会效益包括该项目对具有上级空气、水分、光和热稳定性的高性能有机受体的潜在变革性技术进步的贡献,这些有机受体将被集成到低成本、高效、可持续和耐用的设备中,包括有机场效应晶体管、有机发光设备和太阳能电池,这些设备可以与建筑物或车辆集成,从而在日常生活中明显增加可再生能源的使用并降低其成本。Boltalina博士的目标是将联合收割机与教育和专业发展计划结合起来,为研究生和暑期研究少数民族和其他代表性不足的化学专业学生提供教育和专业发展计划,让他们参与国家和国际合作工作,并为他们提供从学术界到工业界成功职业所需的技能。合成并测试新型n型有机氟半导体的电荷迁移率。市售的多环芳烃和全氟烷基(苄基)碘将用于一锅反应,以促进全氟碳环的加成和随后的还原脱环,从而在多环芳烃上产生芳族或非芳族的六元、五元甚至七元氟化环。这些新的转换系统的实验和计算研究,预计将提高化学反应途径的基本理解,以帮助优化反应的选择性和整体效率。电荷传输数据将被用来确定的具体作用,氟碳环的高度有序的有机氟半导体的电荷迁移率的促进。将探讨增加电子亲和力和更大的固态有序对这些材料的功能增强的影响,如n型半导体,p型掺杂剂和自组装单层。通过其他方法无法获得的新型(多)氟化PAH结构单元很可能容易被更广泛的合成界获得,用于在共价有机框架,生物传感,荧光染料,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olga Boltalina其他文献

Olga Boltalina的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了