Graph Edge Decomposition and Graph Toughness

图边分解和图韧性

基本信息

项目摘要

This project focuses on two central topics in graph theory: optimal edge partition into classes that avoid certain conflicts and the Hamiltonian cycle problem. Both problems have significant theoretical importance and have broad applications in fields such as combinatorial optimization and computer science. In general, finding an optimal edge partition of a certain kind is an NP-complete problem, so is determining the existence of a Hamiltonian cycle in a graph. Under the background of two famous conjectures from the two areas, this project dedicates to developing sufficient conditions that guarantee an optimal edge partition of a given type or the existence of a Hamiltonian cycle in a graph and developing novel techniques for both areas of research. The project also contains research problems that are suitable for students.Specifically, the PI will continue her investigation of two longstanding conjectures: the Overfull Conjecture of Chetwynd and Hilton from 1986 and the Toughness Conjecture of Chvatal from 1973. The PI and her collaborators have recently made significant contributions to both conjectures, but they remain open. For the Overfull Conjecture, extending some techniques that she and her collaborators developed recently, the PI will first investigate it for large graphs of order n and minimum degree arbitrarily close to half of n and explore algorithmic aspects. Then she will attack the conjecture for large graphs with only maximum degree constraints by applying and extending results obtained from the first step. She will also expand the techniques to attack the related Linear Arboricity Conjecture. For the Toughness Conjecture, the PI will gain more insights into it by working on a series of problems in finding spanning substructures under a given toughness condition. The problems include two challenging questions posed by Bauer, Broersma, and Schmeichel in a survey on graph toughness.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目集中在图论中的两个中心主题:避免某些冲突的类的最优边划分和哈密尔顿循环问题。这两个问题都具有重要的理论意义,在组合优化、计算机科学等领域有着广泛的应用。一般说来,寻找某种最优边划分是一个NP完全问题,确定图中是否存在哈密顿圈也是一个NP完全问题。在这两个领域的两个著名猜想的背景下,本项目致力于开发保证图中给定类型的最优边划分或存在哈密顿圈的充分条件,并为这两个领域的研究开发新的技术。该项目也包含了适合学生的研究问题。具体地说,PI将继续她对两个长期存在的猜想的研究:1986年的Chetwynd和Hilton的过度猜想和1973年的Chvtal的韧性猜想。PI和她的合作者最近对这两个猜想做出了重大贡献,但它们仍然是开放的。对于过度猜想,扩展了她和她的合作者最近开发的一些技术,PI将首先研究它对于任意接近n的一半的n阶和最小度的大图,并探索算法方面。然后,她将通过应用和推广第一步得到的结果来攻击只有最大度约束的大型图的猜想。她还将扩展技巧来攻击相关的线性树荫猜想。对于韧性猜想,PI将通过研究在给定韧性条件下寻找生成子结构的一系列问题来获得对它的更多了解。这些问题包括Bauer,Broersma和Schmeichel在一项关于图形难度的调查中提出的两个具有挑战性的问题。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chromatic index of dense quasirandom graphs
稠密拟随机图的色指数
  • DOI:
    10.1016/j.jctb.2022.08.001
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shan, Songling
  • 通讯作者:
    Shan, Songling
Edge coloring graphs with large minimum degree
最小度数较大的边着色图
  • DOI:
    10.1002/jgt.22889
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Plantholt, Michael J.;Shan, Songling
  • 通讯作者:
    Shan, Songling
Erdős–Gyárfás conjecture for $$P_8$$-free graphs
ErdÅsâGyárfá 的 $$P_8$$-free 图猜想
  • DOI:
    10.1007/s00373-022-02578-9
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Gao, Yuping;Shan, Songling
  • 通讯作者:
    Shan, Songling
Towards the Small Quasi-Kernel Conjecture
迈向小准核猜想
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Songling Shan其他文献

The Existence of a 2-Factor in a Graph Satisfying the Local Chvátal-Erdös Condition
图中满足局部 Chvátal-Erdös 条件的 2 因子的存在性
  • DOI:
    10.1137/12090037x
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guantao Chen;Akira Saito;Songling Shan
  • 通讯作者:
    Songling Shan
A note on hamiltonian cycles in 4-tough (P2 ∪ kP1)-free graphs
关于 4-tough (P2 → kP1)-free 图中的哈密顿循环的注释
  • DOI:
    10.1016/j.disc.2022.113081
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Lingjuan Shi;Songling Shan
  • 通讯作者:
    Songling Shan
Towards the Overfull Conjecture
  • DOI:
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Songling Shan
  • 通讯作者:
    Songling Shan
Characterization of graphs of diameter 2 containing a homeomorphically irreducible spanning tree
包含同胚不可约生成树的直径为 2 的图的表征
  • DOI:
    10.1002/jgt.23005
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Songling Shan;Shoichi Tsuchiya
  • 通讯作者:
    Shoichi Tsuchiya
Spanning Trails with Maximum Degree at Most 4 in $$2K_2$$ -Free Graphs
  • DOI:
    10.1007/s00373-017-1823-2
  • 发表时间:
    2017-06-21
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Guantao Chen;M. N. Ellingham;Akira Saito;Songling Shan
  • 通讯作者:
    Songling Shan

Songling Shan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Songling Shan', 18)}}的其他基金

Graph Edge Decomposition and Graph Toughness
图边分解和图韧性
  • 批准号:
    2345869
  • 财政年份:
    2023
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Standard Grant
Conference: 34th Midwestern Conference on Combinatorics and Combinatorial Computing
会议:第34届中西部组合学和组合计算会议
  • 批准号:
    2231600
  • 财政年份:
    2022
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Standard Grant

相似国自然基金

Edge-on型X射线能谱探测器及可重构能谱解析技术研究
  • 批准号:
    61674115
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Adaptive Deep Learning Systems Towards Edge Intelligence
职业:迈向边缘智能的自适应深度学习系统
  • 批准号:
    2338512
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Standard Grant
Research Infrastructure: KCV EDGE (Equitable and Diverse Grant Ecosystem)
研究基础设施:KCV EDGE(公平且多样化的资助生态系统)
  • 批准号:
    2345142
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: Learning for Safe and Secure Operation of Grid-Edge Resources
协作研究:学习电网边缘资源的安全可靠运行
  • 批准号:
    2330154
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Standard Grant
Deep Adder Networks on Edge Devices
边缘设备上的深加法器网络
  • 批准号:
    FT230100549
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    ARC Future Fellowships
Cutting-edge bio-material for 3D printed bone fixation plates
用于 3D 打印骨固定板的尖端生物材料
  • 批准号:
    24K20065
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
MHDSSP: Self-sustaining processes and edge states in magnetohydrodynamic flows subject to rotation and shear
MHDSSP:受到旋转和剪切作用的磁流体动力流中的自持过程和边缘状态
  • 批准号:
    EP/Y029194/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Fellowship
Open Access Block Award 2024 - Edge Hill University
2024 年开放获取区块奖 - Edge Hill 大学
  • 批准号:
    EP/Z532307/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Research Grant
SBIR Phase I: Novel Self-Closing, Transcatheter, Edge-to-Edge Repair Device to Percutaneously Treat Tricuspid Valve Regurgitation Using Jugular or Femoral Vein Access
SBIR 第一阶段:新型自闭合、经导管、边对边修复装置,利用颈静脉或股静脉通路经皮治疗三尖瓣反流
  • 批准号:
    2322197
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Standard Grant
Optimizing Intelligent Vehicular Routing with Edge Computing through Multi-Agent Reinforcement Learning
通过多智能体强化学习利用边缘计算优化智能车辆路由
  • 批准号:
    24K14913
  • 财政年份:
    2024
  • 资助金额:
    $ 12.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了