Rectifiability and Fine Geometry of Sets, Radon Measures, Harmonic Functions, and Temperatures
集合的可整流性和精细几何、氡气测量、调和函数和温度
基本信息
- 批准号:2154047
- 负责人:
- 金额:$ 27.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Geometric measure theory provides an analytical toolkit to detect hidden structure in high-dimensional data sets and to describe non-smooth phenomena such as the formation of corners and singularities in soap bubble clusters. The term ‘measure’ refers to an abstract generalization of length, area, and volume, which assigns a notion of size to each mathematical set. The pervasiveness of measures within contemporary mathematics notwithstanding, there are presently only a few tools available to analyze measures in regimes with low regularity. The proposed investigation seeks to develop novel and robust quantitative methods to study the geometry of general sets and measures in the absence of traditional simplifying hypotheses. The project will explore applications of these tools and methods to the analysis of harmonic functions and temperatures (solutions to the heat equation) in domains with rough boundary, both in ideal settings and inside non-homogenous media. The project will also provide training to graduate research assistants at the University of Connecticut and to visiting Ph.D. students working in geometric measure theory, harmonic analysis, and partial differential equations.The project will develop four interrelated threads of research on the fine geometry of sets, the structure and regularity of measures, and the solutions of partial differential equations. The first line of inquiry pursues questions about subsets of rectifiable curves in infinite dimensional Banach spaces, with a concrete goal of solving the Analyst's Traveling Salesman Problem in a non-Hilbert setting. A second line of inquiry concerns the parameterization problem for Lipschitz images of the plane and the classification of 2-rectifiable Radon measures. Additional work will focus on the structure of measures supported on the graphs of Hölder continuous functions. A third direction of study will involve improved upper bounds on the Hausdorff dimension of harmonic and caloric measures on general domains, along with the relationship between the static and time-dependent cases. The final strand of the research program will confront contemporary challenges and initiate new inquiries in the theory of non-variational free boundary problems for harmonic and elliptic measures with two or more phases.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何测量理论提供了一个分析工具来检测高维数据集中的隐藏结构,并描述非光滑现象,如肥皂泡簇中的角和奇点的形成。术语“度量”指的是长度、面积和体积的抽象概括,它为每个数学集分配了一个大小的概念。尽管测量在当代数学中的普及,但目前只有少数工具可用于分析具有低规律性的制度中的测量。提出的调查旨在发展新的和稳健的定量方法来研究一般集合和测度的几何在缺乏传统的简化假设。该项目将探索这些工具和方法在具有粗糙边界域的调和函数和温度(热方程的解)分析中的应用,无论是在理想环境中还是在非均匀介质中。该项目还将为康涅狄格大学的研究生研究助理以及在几何测量理论、谐波分析和偏微分方程方面工作的访问博士生提供培训。该项目将发展四个相互关联的研究线索:集合的精细几何、测度的结构和规则性,以及偏微分方程的解。第一行探究的是关于无限维Banach空间中可整流曲线子集的问题,其具体目标是求解非hilbert环境下的分析师旅行商问题。第二个问题涉及平面Lipschitz图像的参数化问题和2-可校正Radon测度的分类。额外的工作将集中在Hölder连续函数图所支持的测度的结构上。第三个研究方向将涉及改进一般域上谐波和热量测度的Hausdorff维的上界,以及静态和时间相关情况之间的关系。研究计划的最后一部分将面对当代的挑战,并在具有两个或多个相位的谐波和椭圆测度的非变分自由边界问题理论中发起新的探索。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Badger其他文献
Two sufficient conditions for rectifiable measures
纠正措施的两个充分条件
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Matthew Badger;Raanan Schul - 通讯作者:
Raanan Schul
Hölder Parameterization of Iterated Function Systems and a Self-Affine Phenomenon
迭代函数系统的 Hölder 参数化和自仿射现象
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1
- 作者:
Matthew Badger;Vyron Vellis - 通讯作者:
Vyron Vellis
Subsets of rectifiable curves in Banach spaces II: Universal estimates for almost flat arcs
巴纳赫空间中可整流曲线的子集 II:几乎平坦弧的通用估计
- DOI:
10.1215/00192082-10592390 - 发表时间:
2022 - 期刊:
- 影响因子:0.6
- 作者:
Matthew Badger;Sean McCurdy - 通讯作者:
Sean McCurdy
LOCAL SET APPROXIMATION: MATTILA–VUORINEN TYPE SETS, REIFENBERG TYPE SETS, AND TANGENT SETS
局部集逼近:MATTILA–VUORINEN 类型集、REIFENBERG 类型集和切线集
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Matthew Badger;Stephen Lewis - 通讯作者:
Stephen Lewis
Lower bounds on Bourgain’s constant for harmonic measure
谐波测量布尔干常数的下限
- DOI:
10.4153/s0008414x2300069x - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Matthew Badger;Alyssa Genschaw - 通讯作者:
Alyssa Genschaw
Matthew Badger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Badger', 18)}}的其他基金
Collaborative Research: The Northeast Analysis Network
合作研究:东北分析网
- 批准号:
1901256 - 财政年份:2019
- 资助金额:
$ 27.85万 - 项目类别:
Standard Grant
CAREER: Analysis and Geometry of Measures
职业:测量分析和几何
- 批准号:
1650546 - 财政年份:2017
- 资助金额:
$ 27.85万 - 项目类别:
Continuing Grant
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 27.85万 - 项目类别:
Fellowship
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
- 批准号:
MR/Y020200/1 - 财政年份:2024
- 资助金额:
$ 27.85万 - 项目类别:
Fellowship
Do fine-scale water column structure and particle aggregations favor gelatinous-dominated food webs in subtropical continental shelf environments?
细尺度水柱结构和颗粒聚集是否有利于亚热带大陆架环境中以凝胶状为主的食物网?
- 批准号:
2244690 - 财政年份:2024
- 资助金额:
$ 27.85万 - 项目类别:
Standard Grant
AIGMob: Conditional Generative AI for Fine-grained Urban Mobility Simulation
AIGMob:用于细粒度城市交通模拟的条件生成人工智能
- 批准号:
24K02996 - 财政年份:2024
- 资助金额:
$ 27.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fine-grained music source separation with deep learning models
利用深度学习模型进行细粒度音乐源分离
- 批准号:
10107090 - 财政年份:2024
- 资助金额:
$ 27.85万 - 项目类别:
Collaborative R&D
Integrating Perception and Communication: The Function of Acoustic Fine Structure in Natural Zebra Finch Communication
感知与交流的整合:声学精细结构在天然斑胸草雀交流中的作用
- 批准号:
2321788 - 财政年份:2024
- 资助金额:
$ 27.85万 - 项目类别:
Standard Grant
RII Track-4:NSF: Federated Analytics Systems with Fine-grained Knowledge Comprehension: Achieving Accuracy with Privacy
RII Track-4:NSF:具有细粒度知识理解的联合分析系统:通过隐私实现准确性
- 批准号:
2327480 - 财政年份:2024
- 资助金额:
$ 27.85万 - 项目类别:
Standard Grant
ART: Facilitating Impactful New Entrepreneurs to Accelerate Research Translation (FINE ART)
ART:促进有影响力的新企业家加速研究转化(FINE ART)
- 批准号:
2331351 - 财政年份:2024
- 资助金额:
$ 27.85万 - 项目类别:
Cooperative Agreement
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
- 批准号:
2348589 - 财政年份:2024
- 资助金额:
$ 27.85万 - 项目类别:
Standard Grant
CAREER: Distances and matchings under the lens of fine-grained complexity
职业:细粒度复杂性镜头下的距离和匹配
- 批准号:
2337901 - 财政年份:2024
- 资助金额:
$ 27.85万 - 项目类别:
Continuing Grant