Rectifiability and Fine Geometry of Sets, Radon Measures, Harmonic Functions, and Temperatures
集合的可整流性和精细几何、氡气测量、调和函数和温度
基本信息
- 批准号:2154047
- 负责人:
- 金额:$ 27.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Geometric measure theory provides an analytical toolkit to detect hidden structure in high-dimensional data sets and to describe non-smooth phenomena such as the formation of corners and singularities in soap bubble clusters. The term ‘measure’ refers to an abstract generalization of length, area, and volume, which assigns a notion of size to each mathematical set. The pervasiveness of measures within contemporary mathematics notwithstanding, there are presently only a few tools available to analyze measures in regimes with low regularity. The proposed investigation seeks to develop novel and robust quantitative methods to study the geometry of general sets and measures in the absence of traditional simplifying hypotheses. The project will explore applications of these tools and methods to the analysis of harmonic functions and temperatures (solutions to the heat equation) in domains with rough boundary, both in ideal settings and inside non-homogenous media. The project will also provide training to graduate research assistants at the University of Connecticut and to visiting Ph.D. students working in geometric measure theory, harmonic analysis, and partial differential equations.The project will develop four interrelated threads of research on the fine geometry of sets, the structure and regularity of measures, and the solutions of partial differential equations. The first line of inquiry pursues questions about subsets of rectifiable curves in infinite dimensional Banach spaces, with a concrete goal of solving the Analyst's Traveling Salesman Problem in a non-Hilbert setting. A second line of inquiry concerns the parameterization problem for Lipschitz images of the plane and the classification of 2-rectifiable Radon measures. Additional work will focus on the structure of measures supported on the graphs of Hölder continuous functions. A third direction of study will involve improved upper bounds on the Hausdorff dimension of harmonic and caloric measures on general domains, along with the relationship between the static and time-dependent cases. The final strand of the research program will confront contemporary challenges and initiate new inquiries in the theory of non-variational free boundary problems for harmonic and elliptic measures with two or more phases.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几何测量理论提供了一个分析工具包,可在高维数据集中检测隐藏的结构,并描述非平滑现象,例如肥皂泡簇中的角落和奇异性的形成。 “度量”一词是指长度,面积和音量的抽象概括,该概括为每个数学集合分配了大小的概念。尽管如此,当代数学中的措施的普遍性目前只有一些工具可用于分析规律性较低的制度的措施。拟议的调查旨在开发新颖和鲁棒的定量方法,以研究一般集合和度量的几何形状,而没有传统的简化假设。该项目将探索这些工具和方法在具有粗糙边界的域函数和温度(对热方程的解决方案)分析的应用,无论是在理想的设置还是内部的非叙源介质中。该项目还将为康涅狄格大学和访问博士学位的研究生研究助理提供培训。从几何测量理论,谐波分析和部分微分方程中工作的学生。该项目将开发四个相互关联的研究线程,以了解集合的精细几何形状,测量的结构和规则性以及部分微分方程的解决方案。第一线询问提出了有关无限尺寸Banach空间中可矫正曲线子集的问题,其目的是在非希尔伯特环境中解决分析师的旅行人员问题。第二线查询涉及平面Lipschitz图像的参数化问题以及2个可调的rad测量结果的分类。额外的工作将集中在霍尔德持续功能图上支持的测量结构上。第三个研究方向将涉及在通用域的谐波和热量测量的Hausdorff维度上的上限,以及静态和时间依赖性病例之间的关系。研究计划的最终链将面临当代挑战,并在非不同的自由边界问题中提起新的询问,并具有两个或多个阶段的谐波和椭圆度措施。这项奖项反映了NSF的法定任务,并通过使用该基金会的知识分子和更广泛的影响来评估NSF的法定任务,并被视为珍贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Badger其他文献
Two sufficient conditions for rectifiable measures
纠正措施的两个充分条件
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Matthew Badger;Raanan Schul - 通讯作者:
Raanan Schul
Subsets of rectifiable curves in Banach spaces II: Universal estimates for almost flat arcs
巴纳赫空间中可整流曲线的子集 II:几乎平坦弧的通用估计
- DOI:
10.1215/00192082-10592390 - 发表时间:
2022 - 期刊:
- 影响因子:0.6
- 作者:
Matthew Badger;Sean McCurdy - 通讯作者:
Sean McCurdy
Hölder Parameterization of Iterated Function Systems and a Self-Affine Phenomenon
迭代函数系统的 Hölder 参数化和自仿射现象
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1
- 作者:
Matthew Badger;Vyron Vellis - 通讯作者:
Vyron Vellis
Lower bounds on Bourgain’s constant for harmonic measure
谐波测量布尔干常数的下限
- DOI:
10.4153/s0008414x2300069x - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Matthew Badger;Alyssa Genschaw - 通讯作者:
Alyssa Genschaw
LOCAL SET APPROXIMATION: MATTILA–VUORINEN TYPE SETS, REIFENBERG TYPE SETS, AND TANGENT SETS
局部集逼近:MATTILA–VUORINEN 类型集、REIFENBERG 类型集和切线集
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Matthew Badger;Stephen Lewis - 通讯作者:
Stephen Lewis
Matthew Badger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Badger', 18)}}的其他基金
Collaborative Research: The Northeast Analysis Network
合作研究:东北分析网
- 批准号:
1901256 - 财政年份:2019
- 资助金额:
$ 27.85万 - 项目类别:
Standard Grant
CAREER: Analysis and Geometry of Measures
职业:测量分析和几何
- 批准号:
1650546 - 财政年份:2017
- 资助金额:
$ 27.85万 - 项目类别:
Continuing Grant
相似国自然基金
为了美好的生活而工作:虚拟化团队工作模式下员工工作家庭平衡的新思路
- 批准号:72372056
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
MAP2的m6A甲基化在七氟烷引起SST神经元树突发育异常及精细运动损伤中的作用机制研究
- 批准号:82371276
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
基于“双碳”背景下的“绿色材料与美好生活”主题科普活动及其多媒体传播
- 批准号:52242208
- 批准年份:2022
- 资助金额:10.00 万元
- 项目类别:专项项目
互联网能使生活更美好吗?基于互联网背景的工作-生活渗透对员工幸福感的影响研究
- 批准号:71872130
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
辣椒胞质雄性不育恢复性主效基因精密图谱分析
- 批准号:30800752
- 批准年份:2008
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
- 批准号:
MR/Y011503/1 - 财政年份:2025
- 资助金额:
$ 27.85万 - 项目类别:
Fellowship
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
- 批准号:
MR/Y020200/1 - 财政年份:2024
- 资助金额:
$ 27.85万 - 项目类别:
Fellowship
Do fine-scale water column structure and particle aggregations favor gelatinous-dominated food webs in subtropical continental shelf environments?
细尺度水柱结构和颗粒聚集是否有利于亚热带大陆架环境中以凝胶状为主的食物网?
- 批准号:
2244690 - 财政年份:2024
- 资助金额:
$ 27.85万 - 项目类别:
Standard Grant
AIGMob: Conditional Generative AI for Fine-grained Urban Mobility Simulation
AIGMob:用于细粒度城市交通模拟的条件生成人工智能
- 批准号:
24K02996 - 财政年份:2024
- 资助金额:
$ 27.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fine-grained music source separation with deep learning models
利用深度学习模型进行细粒度音乐源分离
- 批准号:
10107090 - 财政年份:2024
- 资助金额:
$ 27.85万 - 项目类别:
Collaborative R&D