Regularity Versus Singularity Formation in Nonlinear Partial Differential Equations

非线性偏微分方程中的正则性与奇异性形成

基本信息

  • 批准号:
    2154219
  • 负责人:
  • 金额:
    $ 32.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

This project is concerned with various aspects of the theory of partial differential equations related to the dichotomy between regularity and singularity formation, from both a qualitative and a quantitative point of view. The topics to be studied as part of the project are universal in the field of mathematics in the sense that the same paradigm appears, for instance, in geometry, mathematical physics, or dynamical systems. The fundamental issue the project aims to understand is the interplay, for a given system of partial differential equations, between the existence and regularity of solutions versus the appearance of singularities. This type of question is of major importance for both time-dependent and time-independent equations. The project provides research training opportunities for graduate students and postdoctoral researchers.The project lies at the interface of several areas of mathematics, such as Partial Differential Equations, Geometric Measure Theory, Geometric Analysis, and Harmonic Analysis, with many problems under consideration being motivated by relevant applications to liquid crystals, fluid dynamics, statistical physics, and various areas of differential geometry. The Principal Investigator (PI) plans to pursue research in the regularity theory and geometric properties for partial differential equations arising in the theory of minimal surfaces and harmonic maps with free boundaries, by investigating thoroughly a new model where the boundary effects are prevalent. The theory of nonlocal equations makes it possible to study problems which seem to be local at first sight but are intrinsically nonlocal, such as connected sums on the boundary of manifolds or the construction of blow-up solutions of the harmonic map flow with free boundary. The PI plans to continue this fruitful line of research. Related to the latter, the theory of a particularly important class of degenerate/singular partial differential equations connected to the fractional Laplacian has seen some recent developments. Building on recent results, the PI plans to study degenerate/singular equations in fluid dynamics involving variable coefficients. Several models in compressible fluids are a major output of this line of investigation. A possible way to understand the singularities and degeneracies in a system is via geometric microlocal analysis. A useful tool developed over the years by the PI and collaborators, called parabolic gluing, offers a very versatile method to construct new objects, possibly singular, in parabolic equations and geometric flows. As part of this project, the PI plans to continue to develop this method to investigate bubbling phenomena in several parabolic equations coming from physics (fluid dynamics, in particular) and geometry (curvature flows and complex flows, for example).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本课题从定性和定量两个角度研究偏微分方程组理论中有关正则性和奇异性形成的二分法的各个方面。作为项目的一部分,要研究的课题在数学领域是普遍存在的,例如,在几何学、数学物理或动力学系统中也出现了相同的范例。该项目旨在理解的基本问题是,对于给定的偏微分方程组,解的存在和正则性与奇点的出现之间的相互作用。这类问题对于含时方程和含时方程都是非常重要的。该项目为研究生和博士后研究人员提供研究培训机会。该项目涉及多个数学领域,如偏微分方程组、几何测度论、几何分析和调和分析,许多问题正在考虑中,原因是液晶、流体动力学、统计物理和微分几何的各个领域的相关应用。首席调查员(PI)计划通过深入研究边界效应普遍存在的新模型,对极小曲面和自由边界调和映射理论中产生的偏微分方程的正则性理论和几何性质进行研究。非局部方程理论使得研究乍一看似乎是局部的但本质上是非局部的问题成为可能,例如流形边界上的连通和或具有自由边界的调和映射流的爆破解的构造。国际和平研究所计划继续这一卓有成效的研究。与后者相关的是,一类特别重要的退化/奇异偏微分方程类与分数拉普拉斯算子有关的理论最近有了一些发展。在最近结果的基础上,PI计划研究涉及变系数的流体动力学中的退化/奇异方程。可压缩流体中的几个模型是这一研究的主要成果。了解系统中奇异性和简并性的一种可能的方法是通过几何微局域分析。PI和合作者多年来开发了一种有用的工具,称为抛物线粘合,它提供了一种非常通用的方法来构造抛物线方程和几何流中的新对象,可能是奇异的。作为这个项目的一部分,PI计划继续开发这种方法来研究来自物理学(特别是流体动力学)和几何(例如曲率流动和复杂流动)的几个抛物型方程中的气泡现象。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为是值得支持的。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sobolev Mappings Between RCD Spaces and Applications to Harmonic Maps: A Heat Kernel Approach
  • DOI:
    10.1007/s12220-023-01334-6
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shouhei Honda;Y. Sire
  • 通讯作者:
    Shouhei Honda;Y. Sire
Extinction behavior for the fast diffusion equations with critical exponent and Dirichlet boundary conditions
具有临界指数和狄利克雷边界条件的快速扩散方程的消光行为
Nematic Liquid Crystal Flow with Partially Free Boundary
具有部分自由边界的向列液晶流
Partial regularity of the heat flow of half-harmonic maps and applications to harmonic maps with free boundary
半谐波映射热流的部分正则性及其在自由边界谐波映射中的应用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yannick Sire其他文献

Stable Solutions of Elliptic Equations on Riemannian Manifolds
  • DOI:
    10.1007/s12220-011-9278-9
  • 发表时间:
    2011-12-08
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Alberto Farina;Yannick Sire;Enrico Valdinoci
  • 通讯作者:
    Enrico Valdinoci
Layer solutions for the fractional Laplacian on hyperbolic space: existence, uniqueness and qualitative properties
  • DOI:
    10.1007/s10231-013-0358-2
  • 发表时间:
    2013-06-23
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    María del Mar González;Mariel Sáez;Yannick Sire
  • 通讯作者:
    Yannick Sire
Layered solutions for a fractional inhomogeneous Allen–Cahn equation
分数次非齐次 Allen–Cahn 方程的分层解
Travelling Breathers with Exponentially Small Tails in a Chain of Nonlinear Oscillators
On the energy-critical fractional Schrödinger equation in the radial case
径向情况下的能量临界分数阶薛定谔方程

Yannick Sire的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Real Versus Digital: Sustainability optimization for cultural heritage preservation in national libraries
真实与数字:国家图书馆文化遗产保护的可持续性优化
  • 批准号:
    AH/Z000041/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Research Grant
Multimodal opioid-sparing postoperative pain protocol versus standard of care for patients undergoing knee and shoulder arthroscopy: a randomized controlled trial and knowledge translation strategy
多模式阿片类药物保留术后疼痛方案与接受膝关节和肩关节镜检查的患者的护理标准:随机对照试验和知识转化策略
  • 批准号:
    485091
  • 财政年份:
    2023
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Operating Grants
Molecular mechanisms underlying divergent incretin receptor responses in alpha versus beta cells
α细胞与β细胞中肠促胰岛素受体反应不同的分子机制
  • 批准号:
    MR/X021467/1
  • 财政年份:
    2023
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Research Grant
RAPID: Managed Groundwater Recharge (MAR) in a year of exceptional precipitation: Evaluating the impact of dry-well versus on-farm recharge on water quality
RAPID:异常降水年份的地下水管理补给 (MAR):评估干井补给与农场补给对水质的影响
  • 批准号:
    2334880
  • 财政年份:
    2023
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Standard Grant
The relationship between shared versus disparate notions of culture and health
文化与健康的共同概念与不同概念之间的关系
  • 批准号:
    2214749
  • 财政年份:
    2023
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Standard Grant
CAREER: CAS-Climate: Environmental Sustainability of Combined versus Separate Sewer Systems along the U.S. West Coast
职业:CAS-气候:美国西海岸联合下水道系统与独立下水道系统的环境可持续性
  • 批准号:
    2239602
  • 财政年份:
    2023
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Continuing Grant
The pathophysiology and therapeutic approaches of graft-versus-host disease following allogeneic hematopoietic stem cell transplantation with a focus on the role of oral microbiota.
异基因造血干细胞移植后移植物抗宿主病的病理生理学和治疗方法,重点关注口腔微生物群的作用。
  • 批准号:
    23K15301
  • 财政年份:
    2023
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Identifying novel trunk reflexes and their differences after neonatal versus adult spinal cord injury
新生儿与成人脊髓损伤后识别新的躯干反射及其差异
  • 批准号:
    10753793
  • 财政年份:
    2023
  • 资助金额:
    $ 32.06万
  • 项目类别:
The pathogenic flagellate Azumiobodo hoyamushi versus host ascidian immune system
致病性鞭毛虫 Azumiobodo hoyamushi 与宿主海鞘免疫系统的关系
  • 批准号:
    23H02310
  • 财政年份:
    2023
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SaTC: CORE: Medium: Analytic versus Data Driven Models in Steganography: Empowering Each Other
SaTC:核心:中:隐写术中的分析模型与数据驱动模型:相互赋能
  • 批准号:
    2324991
  • 财政年份:
    2023
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了