RUI: Using Colloidal Nanoparticles to Host Photogenerated Spin Qubit Pairs
RUI:使用胶体纳米粒子承载光生自旋量子位对
基本信息
- 批准号:2154372
- 负责人:
- 金额:$ 38.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
WIth support from the Chemical Structure, Dynamics & Mechanisms-B Program of the Chemistry Division, Jacob Olshansky of the Department of Chemistry and Jonathan Friedman of the Department of Physics and Astronomy at Amherst College will be developing and analyzing a new nanoparticle-based system that has potential to serve as a class of quantum bits (qubits) that can be initiated with light. The development of quantum computers and other quantum information science (QIS) technologies has received significant attention in recent years owing to its promise to revolutionize computing. However, the specific molecular systems that will comprise the qubits in these devices remain a challenge. In the current work, the Amherst team focuses on photogenerated (light-initiated) spin qubits that are designed to be generated in well-defined quantum states without requiring expensive millikelvin cooling devices. The team will explore a new nanoparticle-molecule conjugate system for hosting these photogenerated spin qubits. They will characterize these conjugates with both time-resolved optical and spin resonance measurements to evaluate their utility as qubit candidates. The investigations will involve undergraduate students in cutting-edge research that is both interdisciplinary and highly collaborative. The students trained through this work will be better positioned to pursue careers in the burgeoning field of QIS. Photogenerated spin qubit pairs (SQP) offer a promising platform for the development of QIS technologies since they are generated in well-defined (non-Boltzmann populated) spin states. The proposed work aims to expand the scope of the materials that can host these photogenerated SQPs. Specifically, conjugates of nanoparticles and organic molecules offer potential advantages over the all-organic systems typically used to support SQPs. These conjugates are expected to be synthetically tunable, and the unique spin environment provided by the nanoparticle may allow for qubit specific addressability within the qubit pair. The initial work suggests that SQPs hosted by conjugates of ZnO nanoparticles and organic dye molecules can be detected and characterized with electron paramagnetic resonance (EPR) techniques. The research team aims to build a deeper understanding of the spin states in these conjugates through iterative synthetic modifications and spin-state characterization using both custom-built and commercial EPR spectrometers. They plan to demonstrate spin-specific addressability and perform spin-qubit manipulations on multi-spin systems hosted by ZnO nanoparticles. Ultimately, the work could provide researchers with both new materials and potentially new techniques for exploring photogenerated SQPs in the context of QIS applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学结构,动力学机制-化学部B计划的支持下,化学系的Jacob Olshansky和Amherst学院物理与天文学系的Jonathan Friedman将开发和分析一种新的基于纳米粒子的系统,该系统有可能作为一类可以用光启动的量子比特(qubit)。近年来,量子计算机和其他量子信息科学(QIS)技术的发展受到了极大的关注,因为它有望彻底改变计算。然而,在这些设备中构成量子位的特定分子系统仍然是一个挑战。 在目前的工作中,Amherst团队专注于光生(光引发)自旋量子比特,这些量子比特被设计为在定义良好的量子态中生成,而不需要昂贵的毫开尔文冷却设备。该团队将探索一种新的纳米粒子-分子共轭系统来承载这些光生自旋量子比特。他们将用时间分辨的光学和自旋共振测量来表征这些共轭物,以评估它们作为量子位候选者的效用。这些调查将涉及本科生的前沿研究,这是跨学科和高度合作。通过这项工作培训的学生将更好地定位在QIS的新兴领域追求事业。光生自旋量子比特对(SQP)为QIS技术的发展提供了一个有前途的平台,因为它们是在定义良好的(非玻尔兹曼填充)自旋态中产生的。拟议的工作旨在扩大可以容纳这些光生SQP的材料的范围。具体而言,纳米颗粒和有机分子的缀合物提供了优于通常用于支持SQP的全有机系统的潜在优势。预期这些缀合物是合成可调的,并且由纳米颗粒提供的独特自旋环境可以允许量子位对内的量子位特异性寻址能力。 初步的工作表明,由ZnO纳米颗粒和有机染料分子的共轭物托管的SQPs可以检测和表征与电子顺磁共振(EPR)技术。研究团队的目标是通过迭代合成修饰和使用定制和商业EPR光谱仪进行自旋状态表征,对这些共轭物中的自旋状态进行更深入的了解。他们计划展示自旋特定的可寻址性,并对由ZnO纳米颗粒托管的多自旋系统进行自旋量子位操纵。最终,这项工作可以为研究人员提供新材料和潜在的新技术,以探索QIS应用背景下的光生SQPs。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantum Dot–Organic Molecule Conjugates as Hosts for Photogenerated Spin Qubit Pairs
量子点——有机分子共轭物作为光生自旋量子位对的主体
- DOI:10.1021/jacs.2c11952
- 发表时间:2023
- 期刊:
- 影响因子:15
- 作者:Lee, Autumn Y.;Colleran, Troy A.;Jain, Amisha;Niklas, Jens;Rugg, Brandon K.;Mani, Tomoyasu;Poluektov, Oleg G.;Olshansky, Jacob H.
- 通讯作者:Olshansky, Jacob H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacob Olshansky其他文献
Jacob Olshansky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
相似海外基金
Acoustically activated trapping for colloidal filtration: a multiscale experimental investigation using laser-based optical diagnostics
用于胶体过滤的声激活捕获:使用基于激光的光学诊断的多尺度实验研究
- 批准号:
2236466 - 财政年份:2023
- 资助金额:
$ 38.67万 - 项目类别:
Standard Grant
CAREER: Understanding Spatial Heterogeneity in Biofilms Using Colloidal Engineering
职业:利用胶体工程了解生物膜的空间异质性
- 批准号:
2328766 - 财政年份:2023
- 资助金额:
$ 38.67万 - 项目类别:
Continuing Grant
Development of precious metal bio-recycling technology from urban mines using colloidal techniques
利用胶体技术开发城市矿山贵金属生物回收技术
- 批准号:
23H03576 - 财政年份:2023
- 资助金额:
$ 38.67万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Visualization of interaction potentials of charged colloidal structures by using of tracer particles
使用示踪粒子可视化带电胶体结构的相互作用势
- 批准号:
23K04694 - 财政年份:2023
- 资助金额:
$ 38.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Remediation of Per- and Polyfluoroalkyl Substances using Colloidal Activated Carbon
使用胶体活性炭修复全氟烷基和多氟烷基物质
- 批准号:
548973-2019 - 财政年份:2021
- 资助金额:
$ 38.67万 - 项目类别:
Alliance Grants
Remediation of PFAS using Colloidal Activated Carbon
使用胶体活性炭修复 PFAS
- 批准号:
560247-2020 - 财政年份:2020
- 资助金额:
$ 38.67万 - 项目类别:
University Undergraduate Student Research Awards
Dynamics of polyelectrolyte adsorption and colloidal flocculation studied using model colloids
使用模型胶体研究聚电解质吸附和胶体絮凝的动力学
- 批准号:
20F20388 - 财政年份:2020
- 资助金额:
$ 38.67万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Using bidirectional shear protocols to determine microstructural changes responsible for thickening and dethickening in colloidal suspensions
使用双向剪切方案确定导致胶体悬浮液增稠和减稠的微观结构变化
- 批准号:
2010118 - 财政年份:2020
- 资助金额:
$ 38.67万 - 项目类别:
Standard Grant
Remediation of Per- and Polyfluoroalkyl Substances using Colloidal Activated Carbon
使用胶体活性炭修复全氟烷基和多氟烷基物质
- 批准号:
548973-2019 - 财政年份:2020
- 资助金额:
$ 38.67万 - 项目类别:
Alliance Grants
Creation of High-Performance Sulfide-Based Nanocomposite Thermoelectric Materials by Controlling Sea-Island Structure Using Colloidal Method
利用胶体法控制海岛结构制备高性能硫化物基纳米复合热电材料
- 批准号:
19H02440 - 财政年份:2019
- 资助金额:
$ 38.67万 - 项目类别:
Grant-in-Aid for Scientific Research (B)