Neural Network-Based Preconditioning of Adaptive Tabulation for Reactive Flow Applications

基于神经网络的反应流应用自适应表格预处理

基本信息

  • 批准号:
    2154446
  • 负责人:
  • 金额:
    $ 29.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Combustion is the prevalent source of energy in today’s world, and is projected to remain so until the year 2050. Moreover, it is the only viable option for many engineering applications (for example, space launch vehicles). Therefore, the continued study of combustion physics and development of new, more efficient, and cleaner combustion devices is a high priority in today’s engineering world. Over the past five decades, combustion simulations have been invaluable to this effort, and yet they still pose a multitude of challenges. This project aims to tackle one such challenge, specifically how to quickly evaluate chemical properties. The approach proposed here is to combine machine learning methods, which can give a rough estimate of the property of interest, with previously developed tabulation methods that work by bridging the gaps between a relatively small number of evaluations. This combined approach will allow for combustion simulations that are faster, use more complex chemical models, and are more accurate. The project will involve graduate and undergraduate students and provide them with mentoring and experience that will be valuable for their future careers in academia and industry. This research aims to improve the computational efficiency of chemical property evaluations, which comprise most of the computational cost in reactive flow simulations with detailed chemistry. The proposed approach is to use a combination of neural networks (NN) and in situ adaptive tabulation (ISAT), combining the strengths of both. Whereas NN can provide a function approximation at low memory cost, their accuracy cannot be improved without eventually overfitting the data. In contrast, ISAT can achieve any desired level of accuracy, but the size of the resulting table, and hence the computational cost, increases as the maximum allowable error is decreased. The ISAT table size scales with the Hessian of the function being approximated, and so reduction of this Hessian will also lead to a smaller table and lower computational cost. Such reduction will be achieved by using ISAT to tabulate not the full function of interest, but rather the difference between it and an NN function which approximates its Hessian. Two approaches for Hessian approximation will be developed and evaluated. In the first, a simple NN implementation will be trained to approximate the chemical function itself, and will thus approximate the Hessian only implicitly. For the second, an explicit Hessian approximation will be implemented via custom NN loss definitions based on finite differences between adjacent points. The effectiveness of the NN+ISAT combination will be tested on both partially-stirred reactor (PaSR) test cases and complex geometry reacting flow simulations. Success of the proposed methods can lead to significant speedup in reactive flow simulations, enabling the use of larger and more accurate chemical mechanisms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
燃烧是当今世界普遍的能源,预计到2050年仍将如此。此外,它是许多工程应用(例如,空间运载火箭)的唯一可行选择。因此,继续研究燃烧物理和开发新的,更有效的,更清洁的燃烧装置是当今工程界的一个高度优先事项。在过去的五十年里,燃烧模拟对这一努力非常宝贵,但它们仍然带来了许多挑战。该项目旨在解决这样一个挑战,特别是如何快速评估化学性质。这里提出的方法是将联合收割机机器学习方法与以前开发的制表方法相结合,机器学习方法可以粗略估计感兴趣的属性,制表方法通过弥合相对较少数量的评估之间的差距来工作。这种组合方法将允许更快的燃烧模拟,使用更复杂的化学模型,并且更准确。该项目将涉及研究生和本科生,并为他们提供指导和经验,这将是他们未来在学术界和工业界的职业生涯有价值。本研究的目的是提高化学性质评估的计算效率,其中包括大部分的计算成本与详细的化学反应流模拟。所提出的方法是使用神经网络(NN)和原位自适应制表(ISAT)的组合,结合两者的优势。虽然NN可以以低内存成本提供函数近似,但如果最终不过度拟合数据,则无法提高其精度。相比之下,ISAT可以实现任何所需的精度水平,但所得到的表的大小,因此计算成本,随着最大允许误差的减少而增加。ISAT表的大小与被近似的函数的Hessian成比例,因此该Hessian的减少也将导致更小的表和更低的计算成本。这种减少将通过使用ISAT来制表而不是完整的感兴趣的函数,而是它与近似其Hessian的NN函数之间的差异来实现。两种方法海森近似将开发和评估。首先,将训练一个简单的NN实现来逼近化学函数本身,从而仅隐式地逼近Hessian函数。对于第二种情况,将通过基于相邻点之间的有限差异的自定义NN损失定义来实现显式Hessian近似。NN+ISAT组合的有效性将在部分搅拌反应器(PaSR)测试用例和复杂几何反应流模拟上进行测试。所提出的方法的成功可以导致显着加速反应流模拟,使使用更大,更准确的化学mechanism.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pavel Popov其他文献

Results of 131 arterial resections for locally advanced pancreatic cancer (LAPDAC)
131 例局部晚期胰腺癌(LAPDAC)动脉切除术的结果
  • DOI:
    10.1016/j.pan.2024.05.500
  • 发表时间:
    2024-12-05
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Vyacheslav Egorov;Soslan Dzigasov;Pavel Kim;Alex Kolygin;Mikhail Vyborniy;Grigory Bolshakov;Alexander Sorokin;Pavel Popov;Anna Demchenkova;Tatiana Dakhtler
  • 通讯作者:
    Tatiana Dakhtler
Synthetic generation of additive manufacturing roughness surfaces for computational fluid dynamics using single image data
  • DOI:
    10.1140/epjs/s11734-025-01733-6
  • 发表时间:
    2025-06-13
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Thomas Keesom;Pavel Popov;Katherine Hummer;Priyank Dhyani;Gustaaf Jacobs
  • 通讯作者:
    Gustaaf Jacobs
Pancreatectomy with en bloc superior mesenteric vein (SMV) excision and all its tributaries resection without PV-SMV reconstruction for “low” locally advanced pancreatic ductal adenocarcinoma (LAPDAC). When is it possible and how
胰十二指肠切除术联合整块切除肠系膜上静脉(SMV)及其所有分支且不进行门静脉-肠系膜上静脉重建用于“低位”局部晚期胰腺导管腺癌(LAPDAC)。何时可行以及如何进行
  • DOI:
    10.1016/j.pan.2024.05.251
  • 发表时间:
    2024-12-05
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    Vyacheslav Egorov;Soslan Dzigasov;Pavel Kim;Alex Kolygin;Mikhail Vyborniy;Grigory Bolshakov;Pavel Popov;Alexander Sorokin;Anna Demchenkova;Eugeny Kondratiev;Tatiana Dakhtler
  • 通讯作者:
    Tatiana Dakhtler
Hot pressing of Ho<sub>2</sub>O<sub>3</sub> and Dy<sub>2</sub>O<sub>3</sub> based magneto-optical ceramics
  • DOI:
    10.1016/j.omx.2021.100125
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Stanislav Balabanov;Sergey Filofeev;Anton Kaygorodov;Vladimir Khrustov;Dmitry Kuznetsov;Anastasia Novikova;Dmitry Permin;Pavel Popov;Maxim Ivanov
  • 通讯作者:
    Maxim Ivanov

Pavel Popov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

多维在线跨语言Calling Network建模及其在可信国家电子税务软件中的实证应用
  • 批准号:
    91418205
  • 批准年份:
    2014
  • 资助金额:
    170.0 万元
  • 项目类别:
    重大研究计划
基于Wireless Mesh Network的分布式操作系统研究
  • 批准号:
    60673142
  • 批准年份:
    2006
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Standard Grant
Heterogeneous Graph Neural Network based Federated Mobile Crowdsensing
基于异构图神经网络的联合移动群智感知
  • 批准号:
    23K24829
  • 财政年份:
    2024
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of data-driven multiple sound spot synthesis technology based on deep generative neural network models
基于深度生成神经网络模型的数据驱动多声点合成技术开发
  • 批准号:
    23K11177
  • 财政年份:
    2023
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
  • 批准号:
    2308530
  • 财政年份:
    2023
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
  • 批准号:
    2401544
  • 财政年份:
    2023
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Standard Grant
Elements: A Deep Neural Network-based Drone (UAS) Sensing System for 3D Crop Structure Assessment
Elements:用于 3D 作物结构评估的基于深度神经网络的无人机 (UAS) 传感系统
  • 批准号:
    2334690
  • 财政年份:
    2023
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Standard Grant
Development of a neural-network-based accelerator for holography
开发基于神经网络的全息加速器
  • 批准号:
    22KK0183
  • 财政年份:
    2023
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Restoring Dexterous Hand Function with Artificial Neural Network-Based Brain-Computer Interfaces
利用基于人工神经网络的脑机接口恢复灵巧手功能
  • 批准号:
    10680206
  • 财政年份:
    2023
  • 资助金额:
    $ 29.46万
  • 项目类别:
Development of reaction-diffusion based neural network systems
基于反应扩散的神经网络系统的开发
  • 批准号:
    23H00506
  • 财政年份:
    2023
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Safe Lyapunov-Based Deep Neural Network Adaptive Control of a Rehabilitative Upper Extremity Hybrid Exoskeleton
基于安全李亚普诺夫的深度神经网络自适应控制康复上肢混合外骨骼
  • 批准号:
    2230971
  • 财政年份:
    2023
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了