Collaborative Research: Elucidating Exciton Transport in Hierarchical Organic Materials through Time-Resolved Electronic and Vibrational Spectroscopy/Microscopy

合作研究:通过时间分辨电子和振动光谱/显微镜阐明多级有机材料中的激子传输

基本信息

  • 批准号:
    2154449
  • 负责人:
  • 金额:
    $ 28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

With support from the Chemical Structure, Dynamics, and Mechanisms-A (CSDM-A) Program in the Division of Chemistry, a research team led by Erik Grumstrup at Montana State University (MSU) and Jean-Hubert Olivier at the University of Miami (UM) is investigating energy transport in light-harvesting superstructures. These organic platforms are comprised of aromatic dyes, stacked in a face-to-face conformation and then covalently “stapled” together with molecular tethers. The structural rigidity conferred by the tethers enables the construction of nanoscale objects that are structurally and electronically well-defined. By varying the physical rigidity of the tethers through synthetic chemistry, the researchers aim to show that energy transport is enhanced when the vibrations between individual molecules are reduced. To study this effect, the research team will use a variety of time-resolved spectroscopies and microscopies that allow direct imaging of energy transport through the nanostructures in the solid state. The overall scientific goal of this work is to provide a fundamental understanding of the level of disorder that can be tolerated in organic materials while still achieving long-range energy transport necessary for applications in catalysis and energy conversion. To broaden the impact of the work, the research team will develop a science communication channel on YouTube that is thematically centered on the role of chemistry in addressing contemporary problems in climate and energy and will leverage these materials to develop a co-hosted general audience seminar series at UM and MSU.Exciton diffusion lengths in organic nanostructures are often measured in the 10s of nanometers, rather than the micron length scale of inorganic semiconductors. Only a few examples of long-range exciton transport have been reported for organic materials, however these demonstrations are serendipitous, and to date, a fundamental understanding of the relevant structure-function relationships that ensure long range exciton transport is lacking. This project leverages a class of covalently tethered molecular assemblies that feature synthetic “knobs” to regulate both dynamic (electron-phonon coupling) and static heterogeneity (length of tethered dye assemblies) without changing the molecular core through which excitons are transported. Exciton transport in a series of increasingly rigidified assemblies will be measured using a variety of ultrafast spectroscopies and microscopies, both in solution and in the solid state. Experimental data from both solution and solid-state spectroscopic studies will be compared to structurally-accurate kinetic Monte Carlo models, which will be utilized to extract fundamental constraints on the structural and electronic parameters that engender long range exciton transport. Results from these combined studies will deliver new fundamental insight into: 1) how excited state properties of solvated assemblies, such as exciton delocalization and diffusion, can be tailored by tuning interchromophore rigidity, and 2) how exciton transport properties are parameterized by structural domain heterogeneity in hierarchical superstructures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学结构、动力学和机制-A(CSDM-A)项目的支持下,由蒙大拿州立大学(MSU)的Erik Grumstrup和迈阿密大学(UM)的Jean-Hubert Olivier领导的研究小组正在研究捕光上层建筑中的能量传输。这些有机平台由芳族染料组成,以面对面的构象堆叠,然后与分子链共价“钉”在一起。由系链赋予的结构刚性使得能够构造结构和电子上明确定义的纳米级物体。通过合成化学改变系链的物理刚性,研究人员的目标是表明,当单个分子之间的振动减少时,能量传输会增强。为了研究这种效应,研究小组将使用各种时间分辨光谱和显微镜,允许通过固态纳米结构直接成像能量传输。这项工作的总体科学目标是提供对有机材料中可以容忍的无序水平的基本理解,同时仍然实现催化和能量转换应用所需的长距离能量传输。为了扩大这项工作的影响,研究小组将在YouTube上开发一个科学交流频道,主题是化学在解决当代气候和能源问题中的作用,并将利用这些材料在UM和MSU开发共同主办的普通观众研讨会系列。有机纳米结构中的激子扩散长度通常以10纳米为单位测量,而不是无机半导体的微米长度尺度。有机材料中只有少数几个长程激子输运的例子被报道,然而这些演示都是偶然的,到目前为止,缺乏对确保长程激子输运的相关结构-功能关系的基本理解。该项目利用一类共价束缚的分子组装体,其特征在于合成的“旋钮”来调节动态(电子-声子耦合)和静态异质性(束缚染料组装体的长度),而不改变激子被运输的分子核心。激子输运在一系列日益硬化的组件将使用各种超快光谱和显微镜,在溶液和固体状态下测量。溶液和固态光谱研究的实验数据将进行比较,结构准确的动力学蒙特卡罗模型,这将被用来提取的结构和电子参数,产生长距离激子传输的基本约束。这些综合研究的结果将为以下方面提供新的基本见解:1)如何通过调节发色团间刚性来定制溶剂化组装体的激发态性质,例如激子离域和扩散,和2)激子输运性质如何通过分层超结构中的结构域异质性进行参数化。该奖项反映了NSF的法定使命,并通过使用基金会的学术价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jean Hubert Olivier其他文献

Jean Hubert Olivier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jean Hubert Olivier', 18)}}的其他基金

CAREER: Molecular Tools to Tune the Structure-Function Properties of Nanoscale Objects by Reconfiguration of pi-Conjugated Superstructures
职业:通过重新配置 pi 共轭超结构来调整纳米级物体的结构功能特性的分子工具
  • 批准号:
    2401869
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Collaborative Research: Elucidating Exciton Transport in Hierarchical Organic Materials through Time-Resolved Electronic and Vibrational Spectroscopy/Microscopy
合作研究:通过时间分辨电子和振动光谱/显微镜阐明多级有机材料中的激子传输
  • 批准号:
    2401851
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
CAREER: Molecular Tools to Tune the Structure-Function Properties of Nanoscale Objects by Reconfiguration of pi-Conjugated Superstructures
职业:通过重新配置 pi 共轭超结构来调整纳米级物体的结构功能特性的分子工具
  • 批准号:
    1941410
  • 财政年份:
    2020
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
  • 批准号:
    2313860
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
  • 批准号:
    2300890
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
  • 批准号:
    2300891
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Collaborative Research: MRA: Elucidating the multi-dimensionality and scaling of avian diversity-vegetation relationships
合作研究:MRA:阐明鸟类多样性与植被关系的多维性和尺度
  • 批准号:
    2307188
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating the Role of Natural Aerosols in Modulating Boundary Layer Clouds and Precipitation in the Southern Ocean
合作研究:阐明天然气溶胶在调节南大洋边界层云和降水中的作用
  • 批准号:
    2246489
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Continuing Grant
Collaborative Research: Elucidating High Temperature Deformation Mechanisms in Refractory Multi-Principal-Element Alloys
合作研究:阐明难熔多主元合金的高温变形机制
  • 批准号:
    2313861
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating the roles of biogenic exudates in the cycling and uptake of rare earth elements
合作研究:阐明生物渗出物在稀土元素循环和吸收中的作用
  • 批准号:
    2221913
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating the Ocean Dynamics Governing Melt at Glaciers Using Lagrangian Floats
合作研究:利用拉格朗日浮标阐明控制冰川融化的海洋动力学
  • 批准号:
    2319494
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: Elucidating Exciton Transport in Hierarchical Organic Materials through Time-Resolved Electronic and Vibrational Spectroscopy/Microscopy
合作研究:通过时间分辨电子和振动光谱/显微镜阐明多级有机材料中的激子传输
  • 批准号:
    2401851
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
Collaborative Research: MRA: Elucidating the multi-dimensionality and scaling of avian diversity-vegetation relationships
合作研究:MRA:阐明鸟类多样性与植被关系的多维性和尺度
  • 批准号:
    2307189
  • 财政年份:
    2023
  • 资助金额:
    $ 28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了