Collaborative Research: Multi-configurational Methods for Charge Transport in Nanoscale Electronics
合作研究:纳米电子中电荷传输的多配置方法
基本信息
- 批准号:2154832
- 负责人:
- 金额:$ 22.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Professors Erik Hoy of Rowan University and Andrew Sand of Butler University are supported by an award from the Chemical Theory, Models and Computational Methods (CTMC) program in the Division of Chemistry to characterize novel charge transport processes at the quantum level. Understanding charge transport is vital to pursuing new developments in areas considered critically important to long-term national economic success including electronics, solar energy, and materials development. Nanoscale organic electronic devices display unique charge transport properties that can be used to design improved electronic devices (ex. transistors, resistors), but it is challenging to describe charge transport in many of these devices using existing computational methods. The joint Rowan and Butler team will develop new computational tools for generating the charge transport data needed to design the next generation of electronic devices based on non-classical charge transport effects. The developed computational tools will be incorporated into the OpenMolcas software package, which is widely used in both educational and research efforts. Both Butler University and Rowan University have strong commitments to undergraduate education, and a core educational outcome of this project is the development of computationally-engaged undergraduate students fit for either academic or industry positions. Through student recruitment partnerships with mentorship programs and local community colleges, this project provides a pathway into research for students from non-traditional backgrounds and underrepresented groups in the computational sciences.Nanoscale organic electronic devices that operate at the single-molecule level are a key experimental platform for enhancing the scientific community’s understanding of charge transport at the quantum level. Created by combining single organic molecules with metal or carbon-based electrodes, single-molecule devices hold the potential to be the foundation for the next generation of transistors, resistors, and switches for nanoscale electronics. Large gaps remain in our theoretical understanding of non-classical charge transport effects in nanoscale electronics such as the reversal of the expected electrical conductance decay with increasing molecular length. A key reason for this is the limited treatment of electron-electron interactions (electron correlation) by existing transport methods particularly strong/multireference correlation. To resolve this, the Hoy/Sand research team will develop a fully-quantum family of multiconfigurational charge transport methods based on multiconfiguration pair density functional theory (MC-PDFT) combined with the non-equilibrium Green’s function formalism (NEGF). Key objectives include the development of new MC-PDFT-based effective Hamiltonians and self-consistent optimization schemes for multiconfigurational Green’s function transport theories. The integration of these developments within an open-source modular Python framework allows for the characterization of multireference correlation effects in quantum transport phenomena. Using these NEGF-MCPDFT methodologies, the team will investigate including reversed conductance decay, Coulomb blockades, and Kondo Resonances to enhance the scientific community’s understanding of quantum charge transport phenomena.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
罗文大学的 Erik Hoy 教授和巴特勒大学的 Andrew Sand 教授获得了化学系化学理论、模型和计算方法 (CTMC) 项目的奖项支持,以在量子水平上表征新颖的电荷传输过程。了解电荷传输对于在对国家长期经济成功至关重要的领域(包括电子、太阳能和材料开发)寻求新的发展至关重要。纳米级有机电子器件显示出独特的电荷传输特性,可用于设计改进的电子器件(例如晶体管、电阻器),但使用现有的计算方法描述许多这些器件中的电荷传输具有挑战性。罗文和巴特勒的联合团队将开发新的计算工具,用于生成基于非经典电荷传输效应设计下一代电子设备所需的电荷传输数据。开发的计算工具将被纳入 OpenMolcas 软件包中,该软件包广泛用于教育和研究工作。巴特勒大学和罗文大学都对本科教育做出了坚定的承诺,该项目的核心教育成果是培养适合学术或行业职位的计算型本科生。通过与导师计划和当地社区大学的学生招募合作伙伴关系,该项目为来自非传统背景和计算科学领域代表性不足的群体的学生提供了一条研究途径。在单分子水平上运行的纳米级有机电子器件是增强科学界对量子水平上电荷传输的理解的关键实验平台。单分子器件通过将单个有机分子与金属或碳基电极相结合而制成,有可能成为下一代纳米电子晶体管、电阻器和开关的基础。我们对纳米级电子学中非经典电荷传输效应的理论理解仍然存在很大差距,例如随着分子长度的增加预期电导衰减的逆转。造成这种情况的一个关键原因是现有的传输方法(特别是强/多参考相关性)对电子-电子相互作用(电子相关性)的处理有限。为了解决这个问题,Hoy/Sand 研究团队将基于多构型对密度泛函理论 (MC-PDFT) 与非平衡格林函数形式主义 (NEGF) 相结合,开发全量子系列的多构型电荷传输方法。主要目标包括开发新的基于 MC-PDFT 的有效哈密顿量以及多构型格林函数输运理论的自洽优化方案。这些开发成果集成在开源模块化 Python 框架中,可以表征量子输运现象中的多参考相关效应。该团队将使用这些 NEGF-MCPDFT 方法进行研究,包括反向电导衰减、库仑阻塞和近藤共振,以增强科学界对量子电荷传输现象的理解。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Assessing the importance of multireference correlation in predicting reversed conductance decay
评估多参考相关性在预测反向电导衰减中的重要性
- DOI:10.1039/d3cp01110k
- 发表时间:2024
- 期刊:
- 影响因子:3.3
- 作者:Cossaboon, Tanner A.;Kazmi, Samir;Tineo, Matthew;Hoy, Erik P.
- 通讯作者:Hoy, Erik P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erik Hoy其他文献
Erik Hoy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 22.26万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347423 - 财政年份:2024
- 资助金额:
$ 22.26万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 22.26万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 22.26万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
- 批准号:
2348956 - 财政年份:2024
- 资助金额:
$ 22.26万 - 项目类别:
Standard Grant
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
- 批准号:
2349872 - 财政年份:2024
- 资助金额:
$ 22.26万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
- 批准号:
2309310 - 财政年份:2024
- 资助金额:
$ 22.26万 - 项目类别:
Continuing Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
- 批准号:
2309308 - 财政年份:2024
- 资助金额:
$ 22.26万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
- 批准号:
2348955 - 财政年份:2024
- 资助金额:
$ 22.26万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
- 批准号:
2309309 - 财政年份:2024
- 资助金额:
$ 22.26万 - 项目类别:
Continuing Grant