Collaborative Research: Multi-configurational Methods for Charge Transport in Nanoscale Electronics
合作研究:纳米电子中电荷传输的多配置方法
基本信息
- 批准号:2154833
- 负责人:
- 金额:$ 8.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Professors Erik Hoy of Rowan University and Andrew Sand of Butler University are supported by an award from the Chemical Theory, Models and Computational Methods (CTMC) program in the Division of Chemistry to characterize novel charge transport processes at the quantum level. Understanding charge transport is vital to pursuing new developments in areas considered critically important to long-term national economic success including electronics, solar energy, and materials development. Nanoscale organic electronic devices display unique charge transport properties that can be used to design improved electronic devices (ex. transistors, resistors), but it is challenging to describe charge transport in many of these devices using existing computational methods. The joint Rowan and Butler team will develop new computational tools for generating the charge transport data needed to design the next generation of electronic devices based on non-classical charge transport effects. The developed computational tools will be incorporated into the OpenMolcas software package, which is widely used in both educational and research efforts. Both Butler University and Rowan University have strong commitments to undergraduate education, and a core educational outcome of this project is the development of computationally-engaged undergraduate students fit for either academic or industry positions. Through student recruitment partnerships with mentorship programs and local community colleges, this project provides a pathway into research for students from non-traditional backgrounds and underrepresented groups in the computational sciences.Nanoscale organic electronic devices that operate at the single-molecule level are a key experimental platform for enhancing the scientific community’s understanding of charge transport at the quantum level. Created by combining single organic molecules with metal or carbon-based electrodes, single-molecule devices hold the potential to be the foundation for the next generation of transistors, resistors, and switches for nanoscale electronics. Large gaps remain in our theoretical understanding of non-classical charge transport effects in nanoscale electronics such as the reversal of the expected electrical conductance decay with increasing molecular length. A key reason for this is the limited treatment of electron-electron interactions (electron correlation) by existing transport methods particularly strong/multireference correlation. To resolve this, the Hoy/Sand research team will develop a fully-quantum family of multiconfigurational charge transport methods based on multiconfiguration pair density functional theory (MC-PDFT) combined with the non-equilibrium Green’s function formalism (NEGF). Key objectives include the development of new MC-PDFT-based effective Hamiltonians and self-consistent optimization schemes for multiconfigurational Green’s function transport theories. The integration of these developments within an open-source modular Python framework allows for the characterization of multireference correlation effects in quantum transport phenomena. Using these NEGF-MCPDFT methodologies, the team will investigate including reversed conductance decay, Coulomb blockades, and Kondo Resonances to enhance the scientific community’s understanding of quantum charge transport phenomena.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
罗文大学的Erik Hoy教授和巴特勒大学的Andrew Sand教授获得了化学系化学理论,模型和计算方法(CTMC)计划的奖项,以在量子水平上表征新颖的电荷传输过程。了解电荷输运对于在被认为对长期国家经济成功至关重要的领域(包括电子、太阳能和材料开发)寻求新的发展至关重要。纳米级有机电子器件显示出独特的电荷传输特性,可用于设计改进的电子器件(例如,晶体管、电阻器),但是使用现有的计算方法来描述这些器件中的许多器件中的电荷传输是具有挑战性的。联合罗文和巴特勒团队将开发新的计算工具,用于生成设计基于非经典电荷传输效应的下一代电子器件所需的电荷传输数据。开发的计算工具将被纳入OpenMolcas软件包,该软件包广泛用于教育和研究工作。巴特勒大学和罗文大学都对本科教育有着坚定的承诺,该项目的核心教育成果是培养适合学术或行业职位的从事计算的本科生。通过与导师计划和当地社区学院的招生合作,该项目为来自非传统背景和计算科学领域代表性不足的群体的学生提供了一条研究途径。在单分子水平上运行的纳米级有机电子器件是提高科学界对量子水平上电荷传输的理解的关键实验平台。通过将单个有机分子与金属或碳基电极相结合,单分子器件有可能成为下一代纳米级电子器件的晶体管,电阻器和开关的基础。在我们对纳米电子学中的非经典电荷输运效应的理论理解中仍然存在很大的差距,例如随着分子长度的增加,预期的电导衰减的逆转。一个关键的原因是有限的处理电子-电子相互作用(电子相关)通过现有的传输方法,特别是强/多参考相关。为了解决这个问题,Hoy/Sand研究小组将开发一个基于多组态对密度泛函理论(MC-PDFT)结合非平衡绿色函数形式主义(NEGF)的全量子多组态电荷传输方法。主要目标包括新的MC-PDFT为基础的有效哈密顿量和自洽优化计划的多组态绿色的功能输运理论的发展。将这些开发集成到开源模块化Python框架中,可以表征量子传输现象中的多参考相关效应。利用这些NEGF-MCPDFT方法,该团队将研究包括反向电导衰减,库仑阻塞和近藤共振在内的量子电荷传输现象,以提高科学界对量子电荷传输现象的理解。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Sand其他文献
Andrew Sand的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NCS-FR: Individual variability in auditory learning characterized using multi-scale and multi-modal physiology and neuromodulation
合作研究:NCS-FR:利用多尺度、多模式生理学和神经调节表征听觉学习的个体差异
- 批准号:
2409652 - 财政年份:2024
- 资助金额:
$ 8.02万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
- 批准号:
2347423 - 财政年份:2024
- 资助金额:
$ 8.02万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 8.02万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 8.02万 - 项目类别:
Standard Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
- 批准号:
2348956 - 财政年份:2024
- 资助金额:
$ 8.02万 - 项目类别:
Standard Grant
Collaborative Research: GEM--Multi-scale Magnetosphere-Ionosphere-Thermosphere Coupling Dynamics Driven by Bursty Bulk Flows
合作研究:GEM——突发体流驱动的多尺度磁层-电离层-热层耦合动力学
- 批准号:
2349872 - 财政年份:2024
- 资助金额:
$ 8.02万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
- 批准号:
2309310 - 财政年份:2024
- 资助金额:
$ 8.02万 - 项目类别:
Continuing Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
- 批准号:
2309308 - 财政年份:2024
- 资助金额:
$ 8.02万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamics of Short Range Order in Multi-Principal Element Alloys
合作研究:多主元合金中的短程有序动力学
- 批准号:
2348955 - 财政年份:2024
- 资助金额:
$ 8.02万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
- 批准号:
2309309 - 财政年份:2024
- 资助金额:
$ 8.02万 - 项目类别:
Continuing Grant














{{item.name}}会员




