EAGER: Enhancing plant immunity and growth with cell-penetrating peptides for organic agriculture

EAGER:利用有机农业的细胞穿透肽增强植物免疫力和生长

基本信息

  • 批准号:
    2154863
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

To feed the growing world population, the agricultural sector needs to increase food production even while being attentive to the impact of new strategies on ecosystems and human health. Although fertilizers and pesticides play a crucial role in modern agriculture, their adverse impact on the environment and animal/human health have recently inspired a rapid rise in sustainable crop production. A promising environment-friendly alternative is the use of biologics. However, many of the plant defense activators, biostimulants, and biopesticides currently used in sustainable agriculture are proteins and peptides that have low entry efficiency into plant cells, thus necessitating the use of high concentrations and consequently high costs. To address this limitation, this project will leverage a powerful membrane translocation domain (MTD) technology to improve the delivery of biological agents. HrpZ, a proven defense activator, will be fused to MTD4, one of the most potent MTDs in hand, and tested in tomato for its efficacy in eliciting immune responses to bacterial and fungal pathogens. This approach should decrease the effective concentration of defense activators and thereby increase the economic viability of plant biologics for sustainable agriculture and farmers’ income. In addition, the team will explore outreach activities to demonstrate how biodefense molecules can help plants ward off pathogens.Although cell-penetrating peptides (CPPs) have been widely explored for delivering therapeutic agents to treat human diseases/conditions, their applications in plants have been more limited. The goal of this project is to examine the utility of a newly discovered class of CPPs, MTDs, to efficiently deliver HrpZ, a known biodefense activator/biostimulant, into crop plants to protect them from pathogen infection and insect infestation. The three specific aims of this project are: [1] improve the efficiency of cellular entry and metabolic stability of MTD4; [2] determine the effects of MTD4-HrpZ and MTD4-N21 on tomato and rice defense, growth, yield, and drought tolerance; and [3] optimize and develop low-cost recombinant protein expression and chromatography-free purification strategies for large-scale field applications. After completion of the three objectives, this project will provide insights into how CPPs enter plant cells and how their different cellular structures (e.g., lipid composition in membranes) affect the cellular entry mechanism and efficiency of CPPs. Importantly, the use of CPPs to promote plant immunity is likely to be transformative for plant disease control in sustainable agriculture. Our new strategies for overexpression and chromatography-free purification of recombinant proteins are also likely to be of broad interest. In addition, identification of powerful CPPs that can efficiently deliver peptides/proteins into plant cells will provide new tools for biological studies that seek to uncover in planta interactions between different proteins, including pathogen effectors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了养活不断增长的世界人口,农业部门需要增加粮食产量,同时关注新战略对生态系统和人类健康的影响。尽管化肥和农药在现代农业中发挥着至关重要的作用,但它们对环境和动物/人类健康的不利影响最近激发了可持续作物生产的快速增长。一种有前景的环保替代方案是使用生物制剂。然而,目前可持续农业中使用的许多植物防御激活剂、生物刺激剂和生物农药都是蛋白质和肽,它们进入植物细胞的效率较低,因此需要使用高浓度,从而导致成本高昂。为了解决这一限制,该项目将利用强大的膜易位域(MTD)技术来改善生物制剂的输送。 HrpZ 是一种经过验证的防御激活剂,将与 MTD4(现有最有效的 MTD 之一)融合,并在番茄中测试其在引发针对细菌和真菌病原体的免疫反应方面的功效。这种方法应降低防御激活剂的有效浓度,从而提高植物生物制剂的经济可行性,促进可持续农业和农民收入。此外,该团队还将探索外展活动,以展示生物防御分子如何帮助植物抵御病原体。尽管细胞穿透肽(CPP)已被广泛探索用于提供治疗剂来治疗人类疾病/病症,但它们在植物中的应用较为有限。该项目的目标是检验一类新发现的 CPP(MTD)的效用,以有效地将 HrpZ(一种已知的生物防御激活剂/生物刺激剂)传递到农作物中,以保护它们免受病原体感染和昆虫侵扰。该项目的三个具体目标是:[1]提高MTD4的细胞进入效率和代谢稳定性; [2] 确定MTD4-HrpZ和MTD4-N21对番茄和水稻防御、生长、产量和耐旱性的影响; [3]优化和开发用于大规模现场应用的低成本重组蛋白表达和免层析纯化策略。完成这三个目标后,该项目将深入了解 CPP 如何进入植物细胞以及它们不同的细胞结构(例如膜中的脂质成分)如何影响 CPP 的细胞进入机制和效率。重要的是,使用 CPP 来促进植物免疫力可能会为可持续农业中的植物病害控制带来变革。我们的重组蛋白过度表达和免层析纯化的新策略也可能引起广泛的兴趣。此外,鉴定出能够有效地将肽/蛋白质传递到植物细胞中的强大CPP将为生物学研究提供新的工具,旨在揭示植物中不同蛋白质(包括病原体效应子)之间的相互作用。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guo-Liang Wang其他文献

Expression profiling and function analysis identified new microRNAs regulating cumulus expansion and apoptosis in cumulus cells
表达谱和功能分析确定了调节卵丘细胞中卵丘扩张和凋亡的新 microRNA
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Min Zhang;Xiao Han;Hong-Jie Yuan;Guo-Liang Wang;Xin-Yue Zhao;Zhi-Bin Li;Shuai Gong;Jing-He Tan
  • 通讯作者:
    Jing-He Tan
Ubiquitination of susceptibility proteins modulates rice broad-spectrum resistance
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
  • 作者:
    Ruyi Wang;Xiao Xu;Guo-Liang Wang;Yuese Ning
  • 通讯作者:
    Yuese Ning
PTEMD: a novel method for identifyingpolymorphic transposable elements via scanning of high-throughput short reads
PTEMD:一种通过扫描高通量短读段来识别多态性转座元件的新方法
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Stephen Obol Opiyo;Ning Jiang;Shin-Han Shiu;Guo-Liang Wang
  • 通讯作者:
    Guo-Liang Wang
Glutathione triggers leaf-to-leaf, calcium-based plant defense signaling
谷胱甘肽触发叶间基于钙的植物防御信号
  • DOI:
    10.1038/s41467-025-57239-1
  • 发表时间:
    2025-02-24
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Rui Li;Yongfang Yang;Hao Lou;Weicheng Wang;Ran Du;Haidong Chen;Xiaoxi Du;Shuai Hu;Guo-Liang Wang;Jianbin Yan;Xiaoyi Shan;Daoxin Xie
  • 通讯作者:
    Daoxin Xie
Exploiting Broad-Spectrum Disease Resistance in Crops: From Molecular Dissection to Breeding
  • DOI:
    10.1146/annurev-arplant-010720-022215
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    23.9
  • 作者:
    Wei Li;Yiwen Deng;Yuese Ning;Zuhua He;Guo-Liang Wang
  • 通讯作者:
    Guo-Liang Wang

Guo-Liang Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guo-Liang Wang', 18)}}的其他基金

AvrPiz-t-mediated suppression of PAMP- and effector-triggered immunity in rice by targeting host ubiqiutin proteasome system
AvrPiz-t 通过靶向宿主泛素蛋白酶体系统介导抑制水稻中 PAMP 和效应子触发的免疫
  • 批准号:
    1120949
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

T1DTechCHW: Enhancing the Community Health Worker (CHW) Model to Promote Diabetes Technology Use in Young Adults from Underrepresented Minority Groups (YA-URMs) with Type 1 Diabetes (T1D)
T1DTechCHW:加强社区卫生工作者 (CHW) 模式,促进患有 1 型糖尿病 (T1D) 的弱势少数群体 (YA-URM) 年轻人使用糖尿病技术
  • 批准号:
    10417628
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Enhancing plant growth with novel catalytic "fertiliser" targeted towards the highly inefficient enzyme Rubisco
利用针对效率极低的 Rubisco 酶的新型催化“肥料”促进植物生长
  • 批准号:
    2755354
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
RCN: Enhancing Global Plant Transformation Capacity through Research, Training, and Partnerships
RCN:通过研究、培训和合作伙伴关系增强全球工厂转型能力
  • 批准号:
    2210962
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Conference: The 38th Annual Interdisciplinary Plant Group Symposium: Enhancing the Resilience of Plant Systems to Climate Change
会议:第38届年度跨学科植物组研讨会:增强植物系统对气候变化的适应能力
  • 批准号:
    2208816
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Enhancing the effect of fluoride for root caries control in high-risk older adults
增强氟化物对高危老年人根部龋齿控制的效果
  • 批准号:
    10518744
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Understanding and Enhancing PFAS Phytoremediation Mechanisms Using Novel Nanomaterials
使用新型纳米材料了解和增强 PFAS 植物修复机制
  • 批准号:
    10157379
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
Enhancing plant resilience via stress-priming - a solution for sustainable agricultural development
通过应激增强植物的恢复能力——可持续农业发展的解决方案
  • 批准号:
    1943665
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Understanding and Enhancing PFAS Phytoremediation Mechanisms Using Novel Nanomaterials
使用新型纳米材料了解和增强 PFAS 植物修复机制
  • 批准号:
    10556370
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
Understanding and Enhancing PFAS Phytoremediation Mechanisms Using Novel Nanomaterials
使用新型纳米材料了解和增强 PFAS 植物修复机制
  • 批准号:
    10388186
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
Digitization PEN: Small and Hungry: Enhancing LepNet TCN with microlepidoptera and 50 years of host plant data from the Essig Museum
数字化 PEN:小而饥饿:利用微鳞翅目和 Essig 博物馆 50 年寄主植物数据增强 LepNet TCN
  • 批准号:
    2101816
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了