CAS: Understanding Structural Metamorphosis of Transition Metal Chalcogenide Electrocatalyst Interfaces
CAS:了解过渡金属硫族化物电催化剂界面的结构变态
基本信息
- 批准号:2155175
- 负责人:
- 金额:$ 54.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the support of the Chemical Catalysis (CAT) program in the Chemistry Division (CHE) and the Solid State and Materials Chemistry (SSMC) program in the Division of Materials Research (DMR), Manashi Nath and Xinhua Liang from Missouri University of Science & Technology are studying the surface chemistry of transition metal chalcogenide-based electrocatalysts. The materials catalyze water electrolysis under reactive electrochemical conditions and understanding their fundamental activity is important to further improve them. Water electrolysis, also known as water splitting, is a promising way to produce hydrogen and oxygen. Electrochemically-produced hydrogen has significant potential for renewable energy. However, the oxygen evolution reaction (OER) is the most challenging aspect to overcome in electrocatalytic water splitting. Although several highly active OER electrocatalysts have been discovered over the last few years, there remains a lack of understanding of the actual catalyst surface species responsible for their reactivity. In this project, the PIs will investigate an interesting and well-defined family of chalcogenide (selenide and telluride) electrocatalysts with high OER catalytic activity to diagnose their interfacial behavior. Apart from offering new insight about the active surface composition, the PIs will also (i) provide science education opportunities for high school students and educators by organizing workshops and distribution of demonstration toolkits; (ii) provide opportunities for members of underrepresented groups and women in the PI research laboratories and increase diversity in the workplace; (iii) involve researchers at academic levels from undergraduate to postdoc and mentor these coworkers to sharpen their research and scientific communication skills.Through this collaborative research project, the teams of Manashi Nath and Xinhua Liang from Missouri University of Science & Technology will together studying the surface chemistry of transition metal chalcogenide-based electrocatalysts. Although transition metal chalcogenides have shown tremendous promise for catalytic water oxidation owing to their unprecedented high efficiency, there remains a lack of proper understanding of the active surface composition for these catalysts under operational conditions. In this project, the PIs will focus on bridging this knowledge gap by trying to understand the cause of high catalytic activity of transition metal selenide and telluride based electrocatalysts by following speciation and evolution of the active electrochemical interface through detailed in situ and ex situ characterizations of experimentally created surface model analogues, along with density functional theory (DFT) studies. The PIs hypothesize that the catalytic chalcogenide surface in alkaline medium can potentially be described by two different structural models: one resulting from complete chemical conversion of chalcogenide to oxide surface leading to oxide-coated chalcogenide surface, and the other comprising partially hydroxylated mixed anionic (hydroxy)chalcogenide surface which retains compositional integrity of the chalcogenide. The PIs further propose the mixed anionic (hydroxyl)chalcogenide model to be more accurate description of the active surface. These hypotheses will be evaluated by synthesizing catalyst surfaces analogous to the oxide-coated chalcogenide and (hydroxy)chalcogenide models through electrodeposition and atomic layer deposition and collecting experimental evidence from a combination of extensive bulk and surface characterization techniques. Simulation studies will be performed to decipher local coordination environment around the catalytically active site under reactive conditions. This project has the potential to provide structural and functional insight on the nature of the active electrochemical interface, information needed to guide future efforts at surface engineering of such important transition metal chalcogenide-based functional materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学学部(CHE)的化学催化(CAT)项目和材料研究部(DMR)的固态与材料化学(SSMC)项目的支持下,密苏里科技大学的Manashi Nath和Xinhua Liang正在研究过渡金属硫族化合物电催化剂的表面化学。这些材料在反应电化学条件下催化水电解,了解它们的基本活性对进一步改进它们具有重要意义。水电解,也被称为水分解,是一种很有前途的生产氢和氧的方法。电化学生产的氢具有巨大的可再生能源潜力。然而,析氧反应(OER)是电催化水分解中最难克服的问题。虽然在过去的几年中已经发现了几种高活性的OER电催化剂,但对其反应性的实际催化剂表面物种仍然缺乏了解。在这个项目中,pi将研究具有高OER催化活性的有趣且定义明确的硫系(硒化物和碲化物)电催化剂家族,以诊断其界面行为。除了提供有关活性表面成分的新见解外,pi还将(i)通过组织研讨会和分发演示工具包,为高中学生和教育工作者提供科学教育机会;(ii)在PI研究实验室为代表性不足的群体成员和妇女提供机会,并增加工作场所的多样性;(iii)让从本科生到博士后的学术水平的研究人员参与,并指导这些同事提高他们的研究和科学交流技巧。通过这个合作研究项目,来自密苏里科技大学的Manashi Nath和Xinhua Liang团队将共同研究过渡金属硫族化合物电催化剂的表面化学性质。虽然过渡金属硫族化合物由于其前所未有的高效率而在催化水氧化方面显示出巨大的前景,但对这些催化剂在操作条件下的活性表面组成仍然缺乏适当的了解。在这个项目中,pi将通过对实验创建的表面模型类似物进行详细的原位和非原位表征,以及密度泛函理论(DFT)研究,通过跟踪活性电化学界面的形态形成和进化,试图了解过渡金属硒化物和碲化物电催化剂高催化活性的原因,从而弥合这一知识差距。pi假设,在碱性介质中催化硫族化合物表面可以用两种不同的结构模型来描述:一种是由硫族化合物完全化学转化为氧化物表面导致氧化包覆的硫族化合物表面,另一种是由部分羟基化的混合阴离子(羟基)硫族化合物表面组成,保留了硫族化合物的组成完整性。为了更准确地描述活性表面,pi进一步提出了混合阴离子(羟基)硫系模型。这些假设将通过电沉积和原子层沉积合成类似于氧化硫族化合物和(羟基)硫族化合物模型的催化剂表面,并从广泛的体积和表面表征技术的组合中收集实验证据来评估。模拟研究将在反应条件下破译催化活性位点周围的局部配位环境。该项目有可能提供有关活性电化学界面性质的结构和功能见解,以及指导此类重要过渡金属硫族化合物基功能材料未来表面工程所需的信息。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular Cluster Complex of High-Valence Chromium Selenide Carbonyl as Effective Electrocatalyst for Water Oxidation
- DOI:10.3390/catal13040721
- 发表时间:2023-04
- 期刊:
- 影响因子:3.9
- 作者:Ibrahim M. Abdullahi;M. Nath
- 通讯作者:Ibrahim M. Abdullahi;M. Nath
Nanostructured Ternary Nickel‐Based Mixed Anionic (Telluro)‐Selenide as a Superior Catalyst for Oxygen Evolution Reaction
纳米结构三元镍基混合阴离子 (Telluro) 硒化物作为析氧反应的优质催化剂
- DOI:10.1002/ente.202300177
- 发表时间:2023
- 期刊:
- 影响因子:3.8
- 作者:Abdullahi, Ibrahim Munkaila;Thomas, Siby;Gagliardi, Alessio;Zaeem, Mohsen Asle;Nath, Manashi
- 通讯作者:Nath, Manashi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manashi Nath其他文献
Transparency and room temperature ferromagnetism in diluted magnetic polycrystalline emZn/emsub1−emx/em/subemCr/emsubemx/em/subemTe/em non-oxide II-VI semiconductor compounds
稀释磁性多晶 emZn/emsub1−emx/em/subemCr/emsubemx/em/subemTe/em 非氧化物 II-VI 半导体化合物中的透明度和室温铁磁性
- DOI:
10.1016/j.jallcom.2022.166478 - 发表时间:
2022-11-30 - 期刊:
- 影响因子:6.300
- 作者:
Ali Sarikhani;Laleh Avazpour;Wipula Liyanage;Raul Florez;Eric Bohannan;Dave Satterfield;Manashi Nath;Julia E. Medvedeva;Yew San Hor - 通讯作者:
Yew San Hor
TaS2 nanoplatelets produced by laser ablation
- DOI:
10.1557/jmr.2006.0148 - 发表时间:
2006-05-01 - 期刊:
- 影响因子:2.900
- 作者:
Ka Yee Chick;Manashi Nath;B. A. Parkinson - 通讯作者:
B. A. Parkinson
Carbon nanotube encapsulated metal selenide nanostructures for efficient electrocatalytic oxygen evolution reaction
碳纳米管封装金属硒化物纳米结构用于高效电催化析氧反应
- DOI:
10.1039/d2cc03026h - 发表时间:
2022-01-01 - 期刊:
- 影响因子:4.200
- 作者:
Harish Singh;Wipula P.R. Liyanage;Manashi Nath - 通讯作者:
Manashi Nath
Manashi Nath的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manashi Nath', 18)}}的其他基金
CAS: Designing Efficient Electrocatalysts for Selective Reduction of CO2 to Carbon-Rich Products
CAS:设计高效电催化剂,选择性地将二氧化碳还原为富碳产品
- 批准号:
2102609 - 财政年份:2021
- 资助金额:
$ 54.83万 - 项目类别:
Standard Grant
Investigating Mixed Metal Chalcogenides for Electrocatalytic Water Oxidation: An Integrated Experimental and Theoretical Approach towards Materials Innovation
研究用于电催化水氧化的混合金属硫属化物:材料创新的综合实验和理论方法
- 批准号:
1710313 - 财政年份:2017
- 资助金额:
$ 54.83万 - 项目类别:
Continuing Grant
相似国自然基金
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Structural studies for understanding the mechanism of DNA repair in chromatin
了解染色质 DNA 修复机制的结构研究
- 批准号:
23H05475 - 财政年份:2023
- 资助金额:
$ 54.83万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Excellence in Research: Understanding Structural, Magnetic, and Electronic Properties of Chromium Telluride
卓越的研究:了解碲化铬的结构、磁性和电子特性
- 批准号:
2302436 - 财政年份:2023
- 资助金额:
$ 54.83万 - 项目类别:
Standard Grant
Structural understanding of 7SK-snRNP mediated transcriptional regulation
7SK-snRNP 介导的转录调控的结构理解
- 批准号:
10583647 - 财政年份:2023
- 资助金额:
$ 54.83万 - 项目类别:
Understanding the structural mechanism of spontaneous ubiquitin cargo clustering on the cell plasma membrane
了解细胞质膜上自发泛素货物聚集的结构机制
- 批准号:
10730734 - 财政年份:2023
- 资助金额:
$ 54.83万 - 项目类别:
Understanding how activity drives diverse spine structural interactions
了解活动如何驱动不同的脊柱结构相互作用
- 批准号:
10840581 - 财政年份:2023
- 资助金额:
$ 54.83万 - 项目类别:
Understanding the Structural Transformations of Aluminum Foil Anodes during Electrochemical De(alloying) for Sustainable Lithium-ion Batteries
了解可持续锂离子电池电化学脱(合金)过程中铝箔阳极的结构转变
- 批准号:
2321486 - 财政年份:2023
- 资助金额:
$ 54.83万 - 项目类别:
Standard Grant
A structural approach to understanding the role of the centrioles in human sperm
了解人类精子中心粒作用的结构方法
- 批准号:
530939604 - 财政年份:2023
- 资助金额:
$ 54.83万 - 项目类别:
WBP Fellowship
Understanding the structural basis of sodium-triggered activation of neuronal potassium channels
了解钠触发神经元钾通道激活的结构基础
- 批准号:
BB/X007251/1 - 财政年份:2023
- 资助金额:
$ 54.83万 - 项目类别:
Research Grant
Understanding the mechanism of structural changes in calcium silicate hydrates using MD and NMR
使用 MD 和 NMR 了解硅酸钙水合物的结构变化机制
- 批准号:
22KJ1169 - 财政年份:2023
- 资助金额:
$ 54.83万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Understanding the role of structural racism and intergenerational wealth on obesity outcome
了解结构性种族主义和代际财富对肥胖结果的作用
- 批准号:
10458274 - 财政年份:2022
- 资助金额:
$ 54.83万 - 项目类别: