PIPP Phase I: Next Generation Surveillance Incorporating Public Health, One Health, and Data Science to Detect Emerging Pathogens of Pandemic Potential
PIPP 第一阶段:结合公共卫生、单一健康和数据科学的下一代监测,以检测潜在大流行的新兴病原体
基本信息
- 批准号:2200299
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Emerging pathogens such as SARS-CoV-2 cross over from animals to humans and can cause new and deadly diseases. They spread before they are identified, allowing significant infection before detection and response. The threat of new diseases presents a Grand Challenge: How can we routinely collect and analyze data to provide early detection that can help prevent the spread of new diseases and stop the next pandemic? Delayed response to COVID-19 underscores the need for new early detection methods, more effective data management and integration, monitoring of the human-animal interface to detect new and emerging pathogens, and more cooperation and information sharing between animal and public health officials. This Predictive Intelligence for Pandemic Prevention (PIPP) Phase I: Development Grants project will improve our ability to monitor and predict infectious disease threats using traditional and new data sources with novel computer algorithms to produce actionable information that will improve public-health responses to future pandemic threats. We will work with local and state public and animal health officials, practitioners, and community leaders to train them on the cutting-edge science while translating the results into solutions for metropolitan, rural and tribal nation communities. The outcome will be a comprehensive animal and public health surveillance, planning, and response roadmap that can be tailored to the unique needs of communities while enabling effective community response and management.This project will leverage multiple streams of information to identify signals of emerging threats. Achieving this goal requires the development of new diagnostic tools that provide novel information sources and computational frameworks that automate the process of ingesting, harmonizing, and analyzing large, dynamic, and heterogeneous data streams. This work develops and evaluates the outcomes of a set of techniques to surveil and identify the presence of and behavioral responses to an illness and/or pathogen in animals, communities, and individuals prior to symptom onset. The project leverages science-based, human-guided Artificial Intelligence (AI)/Machine Learning (ML) methods to analyze and fuse data streams from surveillance and environmental data to track predictive indicators across scales. These novel methods build on successful applications: wastewater surveillance to detect pathogens, pharmaceuticals, and human-health biomarkers indicative of community presence of existing or emerging infectious diseases (EIDs), animal surveillance to detect many EIDs, environmental modeling for forecasting infectious diseases, and breathomics to identify patients with lung cancer, COVID-19, and tuberculosis. This approach is novel in that it harnesses and integrates multiple surveillance data streams in a layered and parallel approach ensuring accuracy and specificity and enabling effective integration of individual-to-community-wide sampling scales into surveillance systems. This project enables effective design and evaluation of response planning techniques. This award is supported by the cross-directorate Predictive Intelligence for Pandemic Prevention Phase I (PIPP) program, which is jointly funded by the Directorates for Biological Sciences (BIO), Computer Information Science and Engineering (CISE), Engineering (ENG) and Social, Behavioral and Economic Sciences (SBE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新出现的病原体,如SARS-CoV-2,可以从动物传播到人类,并可能导致新的致命疾病。它们在被识别之前就传播了,在发现和反应之前就有了重大感染。新疾病的威胁提出了一个巨大的挑战:我们如何定期收集和分析数据,以提供早期发现,从而帮助防止新疾病的传播和阻止下一次大流行?对新冠肺炎的延迟反应突显出,需要新的早期检测方法,更有效的数据管理和集成,监测人-动物界面以检测新的和正在出现的病原体,以及动物和公共卫生官员之间更多的合作和信息共享。这一预防大流行的预测性情报(PIPP)第一阶段:发展赠款项目将提高我们监测和预测传染病威胁的能力,使用传统和新的数据源以及新的计算机算法来产生可操作的信息,以改进对未来大流行威胁的公共卫生反应。我们将与地方和州公共和动物卫生官员、从业者和社区领导人合作,在将成果转化为大都市、农村和部落社区的解决方案的同时,对他们进行尖端科学方面的培训。其成果将是一个全面的动物和公共卫生监测、规划和应对路线图,可以根据社区的独特需求进行量身定做,同时实现有效的社区响应和管理。该项目将利用多种信息流来识别新出现的威胁的信号。要实现这一目标,需要开发新的诊断工具,以提供新的信息源和计算框架,以自动化接收、协调和分析大型、动态和异类数据流的过程。这项工作开发和评估了一套技术的结果,以监测和识别疾病和/或病原体在症状出现之前在动物、社区和个人中的存在和行为反应。该项目利用以科学为基础、以人为本的人工智能(AI)/机器学习(ML)方法来分析和融合来自监测和环境数据的数据流,以跟踪不同规模的预测指标。这些新方法建立在成功应用的基础上:废水监测以检测病原体、药物和指示社区存在现有或新出现的传染病(EID)的人类健康生物标记物;动物监测以检测许多EID;环境建模用于预测传染病;以及呼吸组学用于识别肺癌、新冠肺炎和结核病患者。这种方法是新颖的,因为它以分层和并行的方法利用和整合了多个监测数据流,确保了准确性和特异性,并能够将从个人到社区范围的抽样尺度有效地整合到监测系统中。该项目能够有效地设计和评估应对规划技术。这一奖项由跨部门的大流行预防第一阶段预测情报(PIPP)计划支持,该计划由生物科学(BIO)、计算机信息科学和工程(CEISE)、工程(ENG)和社会、行为和经济科学(SBE)局长共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Applying data science advances in disease surveillance and control
将数据科学进步应用于疾病监测和控制
- DOI:10.56367/oag-039-10899
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ebert, David S
- 通讯作者:Ebert, David S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Ebert其他文献
Evaluation of deep learning frameworks coupled with an interactive user interface to predict clinical complications after aneurysmal subarachnoid hemorrhage
评估深度学习框架与交互式用户界面相结合以预测动脉瘤性蛛网膜下腔出血后的临床并发症
- DOI:
10.1117/12.3006983 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Rowzat Faiz;Gopichandh Danala;Bappaditya Ray;Warid Islam;David Ebert - 通讯作者:
David Ebert
Deep-sea hydrothermal vents as natural egg-case incubators at Deep-sea hydrothermal vents as natural egg-case incubators at the Galapagos Rift the Galapagos Rift
深海热液喷口作为加拉帕戈斯裂谷的天然蛋壳孵化器 深海热液喷口作为加拉帕戈斯裂谷的天然蛋壳孵化器
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
P. Salinas‐de‐León;Brennan Philips;David Ebert;M. Shivji;F. Cerutti;Cassandra Ruck;Charles R. Fisher;L. Marsh - 通讯作者:
L. Marsh
You Are What You Tweet: A New Hybrid Model for Sentiment Analysis
你发的推文就是你:一种新的情感分析混合模型
- DOI:
10.1007/978-3-319-62416-7_29 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Arthur Huang;David Ebert;Parker Rider - 通讯作者:
Parker Rider
Exploring geographic hotspots using topological data analysis
使用拓扑数据分析探索地理热点
- DOI:
10.1111/tgis.12816 - 发表时间:
2021 - 期刊:
- 影响因子:2.4
- 作者:
Rui Zhang;Jonas Lukasczyk;Feng Wang;David Ebert;P. Shakarian;Elizabeth A. Mack;Ross Maciejewski - 通讯作者:
Ross Maciejewski
Correction to: Effectiveness and acceptance of a web-based depression intervention during waiting time for outpatient psychotherapy: study protocol for a randomized controlled trial
- DOI:
10.1186/s13063-018-2806-1 - 发表时间:
2018-07-19 - 期刊:
- 影响因子:2.000
- 作者:
Sasha-Denise Grünzig;Harald Baumeister;Jürgen Bengel;David Ebert;Lena Krämer - 通讯作者:
Lena Krämer
David Ebert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Ebert', 18)}}的其他基金
ART: Intensifying Translation of Research in Oklahoma (InTRO)
艺术:俄克拉荷马州研究的强化转化(InTRO)
- 批准号:
2331409 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Cooperative Agreement
FEW: Technology and Information Fusion Needs to Address the Food, Energy, Water Systems (FEWS) Nexus Challenges
FEW:技术和信息融合需要解决食品、能源、水系统 (FEWS) 的挑战
- 批准号:
1541863 - 财政年份:2015
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
FODAVA II - The Science of Interaction Workshop
FODAVA II - 交互科学研讨会
- 批准号:
1144379 - 财政年份:2011
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
TLS - Applied Visual Analytics for Economic Decision-Making
TLS - 用于经济决策的应用可视化分析
- 批准号:
0915605 - 财政年份:2009
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: An Advanced Interactive Multifield, Multisource Atmospheric Visual Analysis Environment
协作研究:先进的交互式多领域、多源大气可视化分析环境
- 批准号:
0513464 - 财政年份:2005
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
VISUALIZATION: Advanced Weather Data Visualization
可视化:高级天气数据可视化
- 批准号:
0500467 - 财政年份:2003
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Quantifying and Increasing Information Transmission with Data Perceptualization
通过数据感知量化并增加信息传输
- 批准号:
0328984 - 财政年份:2003
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
VISUALIZATION: Advanced Weather Data Visualization
可视化:高级天气数据可视化
- 批准号:
0222675 - 财政年份:2002
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
ITR/AP+IM: Procedural Representation and Visualization Enabling Personalized Computational Fluid Dynamics
ITR/AP IM:程序表示和可视化实现个性化计算流体动力学
- 批准号:
0121288 - 财政年份:2001
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Visualization and Software Architectures for Volumetric Displays
体积显示的可视化和软件架构
- 批准号:
0196351 - 财政年份:2001
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
- 批准号:
2335504 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Design and production of a next generation vaccine to prevent COVID
SBIR 第二阶段:设计和生产下一代预防新冠病毒的疫苗
- 批准号:
2313338 - 财政年份:2024
- 资助金额:
$ 100万 - 项目类别:
Cooperative Agreement
Collaborative Research: Citizen CATE Next-Generation 2024 Total Solar Eclipse Experiment, Phase 2
合作研究:Citizen CATE 下一代 2024 年日全食实验,第二阶段
- 批准号:
2308306 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
SBIR Phase II: Rotary Electroadhesive Clutch for Lightweight and Energy-Efficient Actuators in Next-Generation Robots
SBIR 第二阶段:用于下一代机器人中的轻质高效执行器的旋转电粘附离合器
- 批准号:
2208905 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Next-Generation Maximal Extractable Value (MEV) Proof Distributed Ledger Architecture
SBIR 第一阶段:下一代最大可提取价值(MEV)证明分布式账本架构
- 批准号:
2213017 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Next generation transcranial ultrasound-based neuromodulation using phase shift nanoemulsions
使用相移纳米乳剂的下一代经颅超声神经调节
- 批准号:
10577371 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Next generation turbomachinery with two-phase flow (Training42Phase)
具有两相流的下一代涡轮机械(Training42Phase)
- 批准号:
EP/Y03158X/1 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Research Grant
PHASE 1 AND PHASE 2 CLINICAL TRIALS FOR NEXT-GENERATION CORONAVIRUS VACCINES
下一代冠状病毒疫苗的 1 期和 2 期临床试验
- 批准号:
10887806 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
POSE: Phase II: CONNECT: Consortium of Open-source plaNNing models for Next-generation Equitable and efficient Communities and Transportation
POSE:第二阶段:CONNECT:下一代公平高效社区和交通的开源规划模型联盟
- 批准号:
2303748 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Collaborative Research: Citizen CATE Next-Generation 2024 Total Solar Eclipse Experiment, Phase 2
合作研究:Citizen CATE 下一代 2024 年日全食实验,第二阶段
- 批准号:
2308305 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant