Collaborative Research: Data-driven Power Systems Control with Stability Guarantee: A Lyapunov Approach

合作研究:具有稳定性保证的数据驱动电力系统控制:李亚普诺夫方法

基本信息

  • 批准号:
    2200692
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-03-15 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

This NSF project aims to design a new data-driven power system control framework with stability guarantee. Power systems are experiencing a period of rapid changes due to the proliferation of renewable generation and distributed energy resources including solar, electric vehicles, and batteries. Many of these new technologies are interfaced with the grid through power electronic interfaces (i.e., inverters) that can be controlled at a much faster timescale compared to conventional machines. However, how to leverage such flexibility is nontrivial due to the nonlinearity, complexity, and uncertainty in the underlying power network. This project will bring transformative changes by developing new reinforcement learning (RL) algorithms for inverter-based frequency and voltage control with formal stability guarantees. The intellectual merits of the project include (i) a novel framework that bridges Lyapunov control theory and RL, therefore providing stability guarantee for learning-based controllers; (ii) neural network structure design that ensures stability constraint is met by design. The broader impacts of the project include various of new courses development and research opportunities for students interested in both energy systems and machine learning/AI.The proposed research consists of three thrusts. Thrust 1 focuses on developing the algorithmic framework that integrates RL with Lyapunov stability constraints, which serves as a foundation to later thrusts. Specifically, we will leverage analytical models to construct Lyapunov functions and engineer the structure of neural network-based controllers to meet the stability constraints. Thrust 2 uses machine learning to discover new Lyapunov functions for realistic power system models and design stable control policies. Thrust 3 integrates the theory and algorithms developed in Thrusts 1 and 2, and robustifies the controllers against modeling error, and network topology re-configurations in both transmission and distribution grids. The contributions of the project are two-folded. On the theoretical side, the proposed research bridges classic control and learning, where control theory provides the structural constraints that guarantee a controller is stable, and RL with neural networks searches over the large parametric spaces to find the best performing controllers that have this structure. On the practical side, our approach clears a critical hurdle in applying RL to power systems by guaranteeing the stability of the learned policy. We envision our framework will serve as the basis for future learning-based smart power system control architectures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF项目旨在设计一种新的具有稳定性保证的数据驱动的电力系统控制框架。由于太阳能、电动汽车和电池等可再生能源和分布式能源的激增,电力系统正在经历一段快速变化的时期。这些新技术中的许多都是通过电力电子接口(即逆变器)与电网连接的,与传统机器相比,这些接口可以更快的时间范围进行控制。然而,由于底层电力网络的非线性、复杂性和不确定性,如何利用这种灵活性并不是微不足道的。该项目将通过开发新的强化学习(RL)算法来为基于逆变器的频率和电压控制带来变革性的变化,并提供形式上的稳定性保证。该项目的智能优点包括:(I)一个新的框架,将Lyapunov控制理论与RL联系起来,从而为基于学习的控制器提供稳定性保证;(Ii)神经网络结构设计,确保通过设计满足稳定性约束。该项目的更广泛影响包括为对能源系统和机器学习/AI感兴趣的学生提供各种新课程开发和研究机会。推力1专注于开发将RL与Lyapunov稳定性约束相结合的算法框架,作为后续推力的基础。具体地说,我们将利用分析模型来构造Lyapunov函数,并设计基于神经网络的控制器的结构,以满足稳定性约束。推力2利用机器学习为现实电力系统模型发现新的李雅普诺夫函数,并设计稳定的控制策略。推力3集成了推力1和推力2中开发的理论和算法,并针对建模错误和输电网和配电网中的网络拓扑重新配置使控制器具有健壮性。该项目的贡献是双重的。在理论方面,提出的研究将经典控制和学习联系起来,其中控制理论提供了确保控制器稳定的结构约束,而神经网络RL在大的参数空间中搜索具有这种结构的最佳控制器。在实践方面,通过保证学习策略的稳定性,我们的方法清除了将RL应用于电力系统的一个关键障碍。我们设想我们的框架将作为未来基于学习的智能电力系统控制体系结构的基础。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust online voltage control with an unknown grid topology
具有未知电网拓扑的鲁棒在线电压控制
Structured Neural-PI Control with End-to-End Stability and Output Tracking Guarantees
  • DOI:
    10.48550/arxiv.2305.17777
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenqi Cui;Yan Jiang;Baosen Zhang;Yuanyuan Shi
  • 通讯作者:
    Wenqi Cui;Yan Jiang;Baosen Zhang;Yuanyuan Shi
Stability Constrained Reinforcement Learning for Decentralized Real-Time Voltage Control
  • DOI:
    10.1109/tcns.2023.3338240
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Jie Feng;Yuanyuan Shi;Guannan Qu;S. Low;Anima Anandkumar;A. Wierman
  • 通讯作者:
    Jie Feng;Yuanyuan Shi;Guannan Qu;S. Low;Anima Anandkumar;A. Wierman
SustainGym: Reinforcement Learning Environments for Sustainable Energy Systems
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christopher Yeh;Victor Li;Rajeev Datta;Julio Arroyo;Nicolas H. Christianson;Chi Zhang;Yize Chen;Mohammad Mehdi Hosseini;A. Golmohammadi;Yuanyuan Shi;Yisong Yue;Adam Wierman
  • 通讯作者:
    Christopher Yeh;Victor Li;Rajeev Datta;Julio Arroyo;Nicolas H. Christianson;Chi Zhang;Yize Chen;Mohammad Mehdi Hosseini;A. Golmohammadi;Yuanyuan Shi;Yisong Yue;Adam Wierman
Leveraging Predictions in Power System Frequency Control: An Adaptive Approach
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuanyuan Shi其他文献

Carbon-Aware EV Charging
碳感知电动汽车充电
A Domain Expertise and Word-Embedding Geometric Projection Based Semantic Mining Framework for Measuring the Soft Power of Social Entities
基于领域专业知识和词嵌入几何投影的语义挖掘框架,用于衡量社会实体的软实力
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Chenyu Zheng;Hong Fan;Rohit Singh;Yuanyuan Shi
  • 通讯作者:
    Yuanyuan Shi
Learning A Foundation Language Model for Geoscience Knowledge Understanding and Utilization
学习地球科学知识理解和利用的基础语言模型
  • DOI:
    10.48550/arxiv.2306.05064
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cheng Deng;Tianhang Zhang;Zhongmou He;Yi Xu;Qiyuan Chen;Yuanyuan Shi;Le Zhou;Luoyi Fu;Weinan Zhang;Xinbing Wang;Cheng Zhou;Zhouhan Lin;Junxian He
  • 通讯作者:
    Junxian He
Analysis of the Transcriptome of Polygonatum odoratum (Mill.) Druce Uncovers Putative Genes Involved in Isoflavonoid Biosynthesis
玉竹转录组分析揭示了参与异黄酮生物合成的推定基因
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Shengxiang Zhang;Yuanyuan Shi;Chunmiao Shan;Liqiang Zhao;Kelong Ma;Luqi Huang;Jiawen Wu
  • 通讯作者:
    Jiawen Wu
Crossed Beam Imaging Of The Reaction Dynamics Of Halogen Atoms With Selected Hydrocarbons
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuanyuan Shi
  • 通讯作者:
    Yuanyuan Shi

Yuanyuan Shi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
  • 批准号:
    2324714
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Integrating Traits, Phylogenies and Distributional Data to Forecast Risks and Resilience of North American Plants
合作研究:BoCP-实施:整合性状、系统发育和分布数据来预测北美植物的风险和恢复力
  • 批准号:
    2325835
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
  • 批准号:
    2323083
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了